These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 16898710)

  • 21. Electroactive C(2) symmetry receptors based on the biphenyl scaffold and tetrathiafulvalene units.
    Delogu G; Fabbri D; Dettori MA; Sallé M; Derf FL; Blesa MJ; Allain M
    J Org Chem; 2006 Nov; 71(24):9096-103. PubMed ID: 17109535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electronic interactions in a new pi-extended tetrathiafulvalene dimer.
    Díaz MC; Illescas BM; Martín N; Perepichka IF; Bryce MR; Levillain E; Viruela R; Ortí E
    Chemistry; 2006 Mar; 12(10):2709-21. PubMed ID: 16429472
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peroxide biosensors and mediated electrochemical regeneration of redox enzymes.
    Pandey PC; Upadhyay S; Upadhyay B
    Anal Biochem; 1997 Oct; 252(1):136-42. PubMed ID: 9324951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. π-Extended tetrathiafulvalene BODIPY (ex-TTF-BODIPY): a redox switched "on-off-on" electrochromic system with two near-infrared fluorescent outputs.
    Bill NL; Lim JM; Davis CM; Bähring S; Jeppesen JO; Kim D; Sessler JL
    Chem Commun (Camb); 2014 Jun; 50(51):6758-61. PubMed ID: 24831301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-pot synthesis of linearly fused N-heterocyles from their angular analogues and studies of their redox and electrochromic properties.
    Sinan M; Ghosh K; Goswami S
    J Org Chem; 2010 Mar; 75(6):2065-8. PubMed ID: 20151716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical bonds and topological effects in radical dimer stabilization.
    Frasconi M; Kikuchi T; Cao D; Wu Y; Liu WG; Dyar SM; Barin G; Sarjeant AA; Stern CL; Carmieli R; Wang C; Wasielewski MR; Goddard WA; Stoddart JF
    J Am Chem Soc; 2014 Aug; 136(31):11011-26. PubMed ID: 25010890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluoride-selective optical sensor based on the dipyrrolyl-tetrathiafulvalene chromophore.
    Rivadehi S; Reid EF; Hogan CF; Bhosale SV; Langford SJ
    Org Biomol Chem; 2012 Jan; 10(4):705-9. PubMed ID: 22139465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular complexes based on tetrathiafulvalene and dialkylviologens.
    Rahman B; Akutsu H; Yamada J; Nakatsuji S
    Molecules; 2007 Apr; 12(4):853-60. PubMed ID: 17851437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of an end-capped sexithiophene bearing fused tetrathiafulvalene (TTF) units.
    Kanibolotsky AL; Kanibolotskaya L; Gordeyev S; Skabara PJ; McCulloch I; Berridge R; Lohr JE; Marchioni F; Wudl F
    Org Lett; 2007 Apr; 9(8):1601-4. PubMed ID: 17381099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New unsymmetrically benzene-fused bis (tetrathiafulvalene): synthesis, characterization, electrochemical properties and electrical conductivity of their materials.
    Abbaz T; Bendjeddou A; Gouasmia A; Villemin D; Shirahata T
    Int J Mol Sci; 2014 Mar; 15(3):4550-64. PubMed ID: 24642878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembly of dimeric tetrathiafulvalene-calix[4]pyrrole: receptor for 1,3,5-trinitrobenzene.
    Nielsen KA; Stein PC
    Org Lett; 2011 Dec; 13(23):6176-9. PubMed ID: 22043976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new saccharide sensor based on a tetrathiafulvalene-anthracene dyad with a boronic acid group.
    Wang Z; Zhang D; Zhu D
    J Org Chem; 2005 Jul; 70(14):5729-32. PubMed ID: 15989361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethanol biosensors and electrochemical oxidation of NADH.
    Pandey PC; Upadhyay S; Upadhyay BC; Pathak HC
    Anal Biochem; 1998 Jul; 260(2):195-203. PubMed ID: 9657878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coordination-directed self-assembly of a simple benzothiadiazole-fused tetrathiafulvalene to low-bandgap metallogels.
    Amacher AM; Puigmartí-Luis J; Geng Y; Lebedev V; Laukhin V; Krämer K; Hauser J; Amabilino DB; Decurtins S; Liu SX
    Chem Commun (Camb); 2015 Oct; 51(81):15063-6. PubMed ID: 26314376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemical growth of organic conducting microcrystals of tetrathiafulvalene bromide.
    Mas-Torrent M; Hadley P
    Small; 2005 Aug; 1(8-9):806-8. PubMed ID: 17193527
    [No Abstract]   [Full Text] [Related]  

  • 36. Electroactive supramolecular self-assembled fibers comprised of doped tetrathiafulvalene-based gelators.
    Kitamura T; Nakaso S; Mizoshita N; Tochigi Y; Shimomura T; Moriyama M; Ito K; Kato T
    J Am Chem Soc; 2005 Oct; 127(42):14769-75. PubMed ID: 16231931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A three-state surface-confined molecular switch with multiple channel outputs.
    Simão C; Mas-Torrent M; Casado-Montenegro J; Otón F; Veciana J; Rovira C
    J Am Chem Soc; 2011 Aug; 133(34):13256-9. PubMed ID: 21809828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis, structure and electrochemistry of ferrocene-peptide macrocycles.
    Chowdhury S; Schatte G; Kraatz HB
    Dalton Trans; 2004 Jun; (11):1726-30. PubMed ID: 15252569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical flow-reactor for expedient synthesis of copper-N-heterocyclic carbene complexes.
    Chapman MR; Shafi YM; Kapur N; Nguyen BN; Willans CE
    Chem Commun (Camb); 2015 Jan; 51(7):1282-4. PubMed ID: 25476754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electronic communication in tetrathiafulvalene (TTF)/C60 systems: toward molecular solar energy conversion materials?
    Martín N; Sánchez L; Herranz MA; Illescas B; Guldi DM
    Acc Chem Res; 2007 Oct; 40(10):1015-24. PubMed ID: 17602676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.