These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 16898714)

  • 1. Turkevich method for gold nanoparticle synthesis revisited.
    Kimling J; Maier M; Okenve B; Kotaidis V; Ballot H; Plech A
    J Phys Chem B; 2006 Aug; 110(32):15700-7. PubMed ID: 16898714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening.
    Bastús NG; Comenge J; Puntes V
    Langmuir; 2011 Sep; 27(17):11098-105. PubMed ID: 21728302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of the X-ray induced gold nanoparticle synthesis.
    Plech A; Kotaidis V; Siems A; Sztucki M
    Phys Chem Chem Phys; 2008 Jul; 10(26):3888-94. PubMed ID: 18688388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turkevich in New Robes: Key Questions Answered for the Most Common Gold Nanoparticle Synthesis.
    Wuithschick M; Birnbaum A; Witte S; Sztucki M; Vainio U; Pinna N; Rademann K; Emmerling F; Kraehnert R; Polte J
    ACS Nano; 2015 Jul; 9(7):7052-71. PubMed ID: 26147899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional core/shell nanoparticles via layer-by-layer assembly. investigation of the experimental parameters for controlling particle aggregation and for enhancing dispersion stability.
    Schneider G; Decher G
    Langmuir; 2008 Mar; 24(5):1778-89. PubMed ID: 18225923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine-tuning size of gold nanoparticles by cooling during reverse micelle synthesis.
    Smetana AB; Wang JS; Boeckl J; Brown GJ; Wai CM
    Langmuir; 2007 Oct; 23(21):10429-32. PubMed ID: 17854207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogel-templated growth of large gold nanoparticles: synthesis of thermally responsive hydrogel-nanoparticle composites.
    Kim JH; Lee TR
    Langmuir; 2007 Jun; 23(12):6504-9. PubMed ID: 17489608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of latent heat in boiling water on the synthesis of gold nanoparticles of different sizes by using the Turkevich method.
    Ding W; Zhang P; Li Y; Xia H; Wang D; Tao X
    Chemphyschem; 2015 Feb; 16(2):447-54. PubMed ID: 25393528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of gold nanoparticle as a novel nanocatalyst on luminol-hydrazine chemiluminescence system and its analytical application.
    Safavi A; Absalan G; Bamdad F
    Anal Chim Acta; 2008 Mar; 610(2):243-8. PubMed ID: 18291135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature.
    Tyagi H; Kushwaha A; Kumar A; Aslam M
    Nanoscale Res Lett; 2016 Dec; 11(1):362. PubMed ID: 27526178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of gold nanoparticle aggregation: experiments and modeling.
    Kim T; Lee CH; Joo SW; Lee K
    J Colloid Interface Sci; 2008 Feb; 318(2):238-43. PubMed ID: 18022182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589.
    Pimprikar PS; Joshi SS; Kumar AR; Zinjarde SS; Kulkarni SK
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):309-16. PubMed ID: 19700266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-responsive polymer-gold nanocomposites as intelligent therapeutic systems.
    Owens DE; Eby JK; Jian Y; Peppas NA
    J Biomed Mater Res A; 2007 Dec; 83(3):692-5. PubMed ID: 17530631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemometric and microscopic analyses for the size growth of monolayer-protected gold nanoparticles during their superlattice formation.
    Yao H; Moriyama K; Kimura K
    Langmuir; 2007 Dec; 23(26):13151-7. PubMed ID: 17994774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Rayleigh scattering spectral method for the determination of raloxifene using gold nanoparticle as a probe.
    Liu SP; He YQ; Liu ZF; Kong L; Lu QM
    Anal Chim Acta; 2007 Aug; 598(2):304-11. PubMed ID: 17719906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration.
    De Jong WH; Hagens WI; Krystek P; Burger MC; Sips AJ; Geertsma RE
    Biomaterials; 2008 Apr; 29(12):1912-9. PubMed ID: 18242692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase transfer of large gold nanoparticles to organic solvents with increased stability.
    McMahon JM; Emory SR
    Langmuir; 2007 Jan; 23(3):1414-8. PubMed ID: 17241067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.