These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 16898755)
21. Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation. Gu YJ; Wong WT Langmuir; 2006 Dec; 22(26):11447-52. PubMed ID: 17154638 [TBL] [Abstract][Full Text] [Related]
22. Synthesis of ordered macroporous Pt/Ru nanocomposites for the electrooxidation of methanol. Zhang D; Ding Y; Gao W; Chen HY; Xia XH J Nanosci Nanotechnol; 2008 Feb; 8(2):979-85. PubMed ID: 18464437 [TBL] [Abstract][Full Text] [Related]
23. In-situ X-ray absorption spectroscopy study of Pt and Ru chemistry during methanol electrooxidation. Holstein WL; Rosenfeld HD J Phys Chem B; 2005 Feb; 109(6):2176-86. PubMed ID: 16851209 [TBL] [Abstract][Full Text] [Related]
24. Multilayered Pt/Ru nanorods with controllable bimetallic sites as methanol oxidation catalysts. Yoo SJ; Jeon TY; Kim KS; Lim TH; Sung YE Phys Chem Chem Phys; 2010 Dec; 12(46):15240-6. PubMed ID: 21046021 [TBL] [Abstract][Full Text] [Related]
25. Nanostructured PtRu/C as anode catalysts prepared in a pseudomicroemulsion with ionic surfactant for direct methanol fuel cell. Xu W; Lu T; Liu C; Xing W J Phys Chem B; 2005 Aug; 109(30):14325-30. PubMed ID: 16852801 [TBL] [Abstract][Full Text] [Related]
26. Electrodeposition of multilayered bimetallic nanoclusters of ruthenium and platinum via surface-limited redox-replacement reactions for electrocatalytic applications. Mkwizu TS; Mathe MK; Cukrowski I Langmuir; 2010 Jan; 26(1):570-80. PubMed ID: 19795847 [TBL] [Abstract][Full Text] [Related]
27. Heat-induced alterations in the surface population of metal sites in bimetallic nanoparticles. Hwang BJ; Sarma LS; Wang GR; Chen CH; Liu DG; Sheu HS; Lee JF Chemistry; 2007; 13(21):6255-64. PubMed ID: 17458913 [TBL] [Abstract][Full Text] [Related]
28. Synthesis of Pt/Ru bimetallic nanoparticles in high-temperature and high-pressure fluids. Ueji M; Harada M; Kimura Y J Colloid Interface Sci; 2008 Jun; 322(1):358-63. PubMed ID: 18377917 [TBL] [Abstract][Full Text] [Related]
29. A durable PtRu/C catalyst with a thin protective layer for direct methanol fuel cells. Shimazaki Y; Hayasaka S; Koyama T; Nagao D; Kobayashi Y; Konno M J Colloid Interface Sci; 2010 Nov; 351(2):580-3. PubMed ID: 20797720 [TBL] [Abstract][Full Text] [Related]
30. A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Zhou YG; Chen JJ; Wang FB; Sheng ZH; Xia XH Chem Commun (Camb); 2010 Aug; 46(32):5951-3. PubMed ID: 20601996 [TBL] [Abstract][Full Text] [Related]
31. Efficiency enhancement of methanol/ethanol oxidation reactions on Pt nanoparticles prepared using a new surfactant, 1,1-dimethyl heptanethiol. Şen F; Şen S; Gökağaç G Phys Chem Chem Phys; 2011 Jan; 13(4):1676-84. PubMed ID: 21125095 [TBL] [Abstract][Full Text] [Related]
32. Polyoxometalate-modified carbon nanotubes: new catalyst support for methanol electro-oxidation. Pan D; Chen J; Tao W; Nie L; Yao S Langmuir; 2006 Jun; 22(13):5872-6. PubMed ID: 16768522 [TBL] [Abstract][Full Text] [Related]
33. Probing the formation mechanism and chemical states of carbon-supported Pt-Ru nanoparticles by in situ X-ray absorption spectroscopy. Hwang BJ; Chen CH; Sarma LS; Chen JM; Wang GR; Tang MT; Liu DG; Lee JF J Phys Chem B; 2006 Apr; 110(13):6475-82. PubMed ID: 16570944 [TBL] [Abstract][Full Text] [Related]
34. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology. Guo S; Dong S; Wang E Chemistry; 2008; 14(15):4689-95. PubMed ID: 18384027 [TBL] [Abstract][Full Text] [Related]
35. Effect of surface segregation on the methanol oxidation reaction in carbon-supported Pt-Ru alloy nanoparticles. Jeon TY; Lee KS; Yoo SJ; Cho YH; Kang SH; Sung YE Langmuir; 2010 Jun; 26(11):9123-9. PubMed ID: 20377220 [TBL] [Abstract][Full Text] [Related]
36. Spherical carbon capsules with hollow macroporous core and mesoporous shell structures as a highly efficient catalyst support in the direct methanol fuel cell. Chai GS; Yoon SB; Kim JH; Yu JS Chem Commun (Camb); 2004 Dec; (23):2766-7. PubMed ID: 15568107 [TBL] [Abstract][Full Text] [Related]
37. Preparation and characterization of long-lived anode catalyst for direct methanol fuel cells. Shimazaki Y; Kobayashi Y; Sugimasa M; Yamada S; Itabashi T; Miwa T; Konno M J Colloid Interface Sci; 2006 Aug; 300(1):253-8. PubMed ID: 16631771 [TBL] [Abstract][Full Text] [Related]
38. Highly dispersed Pt nanoparticles immobilized on 1,4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation. Cui SK; Guo DJ J Colloid Interface Sci; 2009 May; 333(1):300-3. PubMed ID: 19232631 [TBL] [Abstract][Full Text] [Related]
39. MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells. Zhou C; Wang H; Peng F; Liang J; Yu H; Yang J Langmuir; 2009 Jul; 25(13):7711-7. PubMed ID: 19402653 [TBL] [Abstract][Full Text] [Related]
40. Simple and controllable synthesis of highly dispersed Pt-Ru/C catalysts by a two-step spray pyrolysis process. Xue X; Lu T; Liu C; Xing W Chem Commun (Camb); 2005 Mar; (12):1601-3. PubMed ID: 15770273 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]