BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 16899538)

  • 1. Transmembrane domain VII of the human apical sodium-dependent bile acid transporter ASBT (SLC10A2) lines the substrate translocation pathway.
    Hussainzada N; Banerjee A; Swaan PW
    Mol Pharmacol; 2006 Nov; 70(5):1565-74. PubMed ID: 16899538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis and use of bile acid-MTS conjugates to probe the role of cysteines in the human apical sodium-dependent bile acid transporter (SLC10A2).
    Banerjee A; Ray A; Chang C; Swaan PW
    Biochemistry; 2005 Jun; 44(24):8908-17. PubMed ID: 15952798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytosolic half of transmembrane domain IV of the human bile acid transporter hASBT (SLC10A2) forms part of the substrate translocation pathway.
    Khantwal CM; Swaan PW
    Biochemistry; 2008 Mar; 47(12):3606-14. PubMed ID: 18311924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Putative irreversible inhibitors of the human sodium-dependent bile acid transporter (hASBT; SLC10A2) support the role of transmembrane domain 7 in substrate binding/translocation.
    González PM; Hussainzada N; Swaan PW; Mackerell AD; Polli JE
    Pharm Res; 2012 Jul; 29(7):1821-31. PubMed ID: 22354836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic and potential cation-pi forces may guide the interaction of extracellular loop III with Na+ and bile acids for human apical Na+-dependent bile acid transporter.
    Banerjee A; Hussainzada N; Khandelwal A; Swaan PW
    Biochem J; 2008 Mar; 410(2):391-400. PubMed ID: 18028035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational flexibility of helix VI is essential for substrate permeation of the human apical sodium-dependent bile acid transporter.
    Hussainzada N; Khandewal A; Swaan PW
    Mol Pharmacol; 2008 Feb; 73(2):305-13. PubMed ID: 17971420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmembrane helix 1 contributes to substrate translocation and protein stability of bile acid transporter SLC10A2.
    da Silva TC; Hussainzada N; Khantwal CM; Polli JE; Swaan PW
    J Biol Chem; 2011 Aug; 286(31):27322-32. PubMed ID: 21646357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substituted cysteine accessibility of the third transmembrane domain of the creatine transporter: defining a transport pathway.
    Dodd JR; Christie DL
    J Biol Chem; 2005 Sep; 280(38):32649-54. PubMed ID: 16049011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane domain II of the human bile acid transporter SLC10A2 coordinates sodium translocation.
    Sabit H; Mallajosyula SS; MacKerell AD; Swaan PW
    J Biol Chem; 2013 Nov; 288(45):32394-32404. PubMed ID: 24045943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformationally sensitive residues in extracellular loop 5 of the Na+/dicarboxylate co-transporter.
    Pajor AM; Randolph KM
    J Biol Chem; 2005 May; 280(19):18728-35. PubMed ID: 15774465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of novel synthetic MTS conjugates of bile acids for site-directed sulfhydryl labeling of cysteine residues in bile acid binding and transporting proteins.
    Ray A; Banerjee A; Chang C; Khantwal CM; Swaan PW
    Bioorg Med Chem Lett; 2006 Mar; 16(6):1473-6. PubMed ID: 16387497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane domain V plays a stabilizing role in the function of human bile acid transporter SLC10A2.
    Moore RH; Chothe P; Swaan PW
    Biochemistry; 2013 Jul; 52(30):5117-24. PubMed ID: 23815591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine-scanning mutagenesis and thiol modification of the Rickettsia prowazekii ATP/ADP translocase: evidence that transmembrane regions I and II, but not III, are structural components of the aqueous translocation channel.
    Alexeyev MF; Roberts RA; Daugherty RM; Audia JP; Winkler HH
    Biochemistry; 2004 Jun; 43(22):6995-7002. PubMed ID: 15170337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane helix 7 in the Na+/dicarboxylate cotransporter 1 is an outer helix that contains residues critical for function.
    Pajor AM; Sun NN; Joshi AD; Randolph KM
    Biochim Biophys Acta; 2011 Jun; 1808(6):1454-61. PubMed ID: 21073858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cytosolic half of helix III forms the substrate exit route during permeation events of the sodium/bile acid cotransporter ASBT.
    Hussainzada N; Claro Da Silva T; Swaan PW
    Biochemistry; 2009 Sep; 48(36):8528-39. PubMed ID: 19653651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conserved cysteine 7.38 residue is differentially accessible in the binding-site crevices of the mu, delta, and kappa opioid receptors.
    Xu W; Chen C; Huang P; Li J; de Riel JK; Javitch JA; Liu-Chen LY
    Biochemistry; 2000 Nov; 39(45):13904-15. PubMed ID: 11076532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NBCe1-A Transmembrane Segment 1 Lines the Ion Translocation Pathway.
    Zhu Q; Azimov R; Kao L; Newman D; Liu W; Abuladze N; Pushkin A; Kurtz I
    J Biol Chem; 2009 Mar; 284(13):8918-29. PubMed ID: 19158093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformationally sensitive residues in transmembrane domain 9 of the Na+/dicarboxylate co-transporter.
    Pajor AM
    J Biol Chem; 2001 Aug; 276(32):29961-8. PubMed ID: 11399753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of the mutant Ser-460-Cys implicate this site in a functionally important region of the type IIa Na(+)/P(i) cotransporter protein.
    Lambert G; Forster IC; Stange G; Biber J; Murer H
    J Gen Physiol; 1999 Nov; 114(5):637-52. PubMed ID: 10532962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine-349 and aspartate-373 of the Na(+)/dicarboxylate cotransporter are conformationally sensitive residues.
    Yao X; Pajor AM
    Biochemistry; 2002 Jan; 41(3):1083-90. PubMed ID: 11790133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.