These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 16899653)
21. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. Dunn B; Levine RP; Sherlock G BMC Genomics; 2005 Apr; 6():53. PubMed ID: 15833139 [TBL] [Abstract][Full Text] [Related]
22. Gene duplication and the evolution of ribosomal protein gene regulation in yeast. Wapinski I; Pfiffner J; French C; Socha A; Thompson DA; Regev A Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5505-10. PubMed ID: 20212107 [TBL] [Abstract][Full Text] [Related]
24. Comparative analysis of structured RNAs in S. cerevisiae indicates a multitude of different functions. Steigele S; Huber W; Stocsits C; Stadler PF; Nieselt K BMC Biol; 2007 Jun; 5():25. PubMed ID: 17577407 [TBL] [Abstract][Full Text] [Related]
25. Predicting essential genes for identifying potential drug targets in Aspergillus fumigatus. Lu Y; Deng J; Rhodes JC; Lu H; Lu LJ Comput Biol Chem; 2014 Jun; 50():29-40. PubMed ID: 24569026 [TBL] [Abstract][Full Text] [Related]
26. Tools and methods for genetic analysis of Saccharomyces castellii. Astromskas E; Cohn M Yeast; 2007 Jun; 24(6):499-509. PubMed ID: 17431926 [TBL] [Abstract][Full Text] [Related]
27. Position specific variation in the rate of evolution in transcription factor binding sites. Moses AM; Chiang DY; Kellis M; Lander ES; Eisen MB BMC Evol Biol; 2003 Aug; 3():19. PubMed ID: 12946282 [TBL] [Abstract][Full Text] [Related]
28. Annotation of 2,507 Wang M; Li X; Liu X; Hou X; He Y; Yu J-H; Hu S; Yin H; Xie B-B Microbiol Spectr; 2024 Apr; 12(4):e0358223. PubMed ID: 38488392 [No Abstract] [Full Text] [Related]
29. Two-dimensional gel analysis of the proteome of lager brewing yeasts. Joubert R; Brignon P; Lehmann C; Monribot C; Gendre F; Boucherie H Yeast; 2000 Apr; 16(6):511-22. PubMed ID: 10790688 [TBL] [Abstract][Full Text] [Related]
30. Gene essentiality prediction based on fractal features and machine learning. Yu Y; Yang L; Liu Z; Zhu C Mol Biosyst; 2017 Feb; 13(3):577-584. PubMed ID: 28145541 [TBL] [Abstract][Full Text] [Related]
31. Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. Snoek IS; Steensma HY FEMS Yeast Res; 2006 May; 6(3):393-403. PubMed ID: 16630279 [TBL] [Abstract][Full Text] [Related]
32. Divergence of transcription factor binding sites across related yeast species. Borneman AR; Gianoulis TA; Zhang ZD; Yu H; Rozowsky J; Seringhaus MR; Wang LY; Gerstein M; Snyder M Science; 2007 Aug; 317(5839):815-9. PubMed ID: 17690298 [TBL] [Abstract][Full Text] [Related]
33. FTIR spectroscopic discrimination of Saccharomyces cerevisiae and Saccharomyces bayanus strains. Adt I; Kohler A; Gognies S; Budin J; Sandt C; Belarbi A; Manfait M; Sockalingum GD Can J Microbiol; 2010 Sep; 56(9):793-801. PubMed ID: 20921989 [TBL] [Abstract][Full Text] [Related]
34. AVID: an integrative framework for discovering functional relationships among proteins. Jiang T; Keating AE BMC Bioinformatics; 2005 Jun; 6():136. PubMed ID: 15929793 [TBL] [Abstract][Full Text] [Related]
35. Advances and perspectives in computational prediction of microbial gene essentiality. Mobegi FM; Zomer A; de Jonge MI; van Hijum SA Brief Funct Genomics; 2017 Mar; 16(2):70-79. PubMed ID: 26857942 [TBL] [Abstract][Full Text] [Related]
36. A dissection of volatility in yeast. Stoletzki N; Welch J; Hermisson J; Eyre-Walker A Mol Biol Evol; 2005 Oct; 22(10):2022-6. PubMed ID: 15958784 [TBL] [Abstract][Full Text] [Related]
37. Prediction of essential proteins based on subcellular localization and gene expression correlation. Fan Y; Tang X; Hu X; Wu W; Ping Q BMC Bioinformatics; 2017 Dec; 18(Suppl 13):470. PubMed ID: 29219067 [TBL] [Abstract][Full Text] [Related]
38. Changes in gene expression of commercial baker's yeast during an air-drying process that simulates dried yeast production. Nakamura T; Mizukami-Murata S; Ando A; Murata Y; Takagi H; Shima J J Biosci Bioeng; 2008 Oct; 106(4):405-8. PubMed ID: 19000619 [TBL] [Abstract][Full Text] [Related]
39. Methods in comparative genomics: genome correspondence, gene identification and regulatory motif discovery. Kellis M; Patterson N; Birren B; Berger B; Lander ES J Comput Biol; 2004; 11(2-3):319-55. PubMed ID: 15285895 [TBL] [Abstract][Full Text] [Related]
40. Comparison of the yeast proteome to other fungal genomes to find core fungal genes. Hsiang T; Baillie DL J Mol Evol; 2005 Apr; 60(4):475-83. PubMed ID: 15883882 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]