These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 16899717)

  • 1. Effects of sensing behavior on a latency code.
    Sawtell NB; Williams A; Roberts PD; von der Emde G; Bell CC
    J Neurosci; 2006 Aug; 26(32):8221-34. PubMed ID: 16899717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal Diversification Is Associated with Corollary Discharge Evolution in Weakly Electric Fish.
    Fukutomi M; Carlson BA
    J Neurosci; 2020 Aug; 40(33):6345-6356. PubMed ID: 32661026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling latency code processing in the electric sense: from the biological template to its VLSI implementation.
    Engelmann J; Walther T; Grant K; Chicca E; Gómez-Sena L
    Bioinspir Biomim; 2016 Sep; 11(5):055007. PubMed ID: 27623047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex recognition and neuronal coding of electric organ discharge waveform in the pulse-type weakly electric fish, Hypopomus occidentalis.
    Shumway CA; Zelick RD
    J Comp Physiol A; 1988 Aug; 163(4):465-78. PubMed ID: 3184009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory processing and corollary discharge effects in the mormyromast regions of the mormyrid electrosensory lobe. I. Field potentials, cellular activity in associated structures.
    Bell CC; Grant K; Serrier J
    J Neurophysiol; 1992 Sep; 68(3):843-58. PubMed ID: 1432052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre-receptor profile of sensory images and primary afferent neuronal representation in the mormyrid electrosensory system.
    Gómez L; Budelli R; Grant K; Caputi AA
    J Exp Biol; 2004 Jun; 207(Pt 14):2443-53. PubMed ID: 15184516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal selectivity in midbrain electrosensory neurons identified by modal variation in active sensing.
    Pluta SR; Kawasaki M
    J Neurophysiol; 2010 Jul; 104(1):498-507. PubMed ID: 20505132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambiguous encoding of stimuli by primary sensory afferents causes a lack of independence in the perception of multiple stimulus attributes.
    Carlson BA; Kawasaki M
    J Neurosci; 2006 Sep; 26(36):9173-83. PubMed ID: 16957074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. II. Intra-axonal recordings show initial stages of central processing.
    Bell CC
    J Neurophysiol; 1990 Feb; 63(2):303-18. PubMed ID: 2313347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity in an electrosensory system. I. General features of a dynamic sensory filter.
    Bastian J
    J Neurophysiol; 1996 Oct; 76(4):2483-96. PubMed ID: 8899621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish.
    Carlson BA
    J Physiol Paris; 2002; 96(5-6):405-19. PubMed ID: 14692489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity of feedback inputs in the apteronotid electrosensory system.
    Bastian J
    J Exp Biol; 1999 May; 202(Pt 10):1327-37. PubMed ID: 10210673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory processing and corollary discharge effects in mormyromast regions of mormyrid electrosensory lobe. II. Cell types and corollary discharge plasticity.
    Bell CC; Grant K
    J Neurophysiol; 1992 Sep; 68(3):859-75. PubMed ID: 1432053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroreceptor model of weakly electric fish Gnathonemus petersii: II. Cellular origin of inverse waveform tuning.
    Shuai J; Kashimori Y; Hoshino O; Kambara T; Emde G
    Biophys J; 1999 Jun; 76(6):3012-25. PubMed ID: 10354427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural readout of a latency code in the active electrosensory system.
    Perks KE; Sawtell NB
    Cell Rep; 2022 Mar; 38(13):110605. PubMed ID: 35354029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory Specializations of Mormyrid Fish Are Associated with Species Differences in Electric Signal Localization Behavior.
    Vélez A; Ryoo DY; Carlson BA
    Brain Behav Evol; 2018; 92(3-4):125-141. PubMed ID: 30820010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric organ discharges and electric images during electrolocation.
    Assad C; Rasnow B; Stoddard PK
    J Exp Biol; 1999 May; 202(Pt 10):1185-93. PubMed ID: 10210660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory receptor diversity establishes a peripheral population code for stimulus duration at low intensities.
    Lyons-Warren AM; Hollmann M; Carlson BA
    J Exp Biol; 2012 Aug; 215(Pt 15):2586-600. PubMed ID: 22786635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Granular cells of the mormyrid electrosensory lobe and postsynaptic control over presynaptic spike occurrence and amplitude through an electrical synapse.
    Zhang J; Han VZ; Meek J; Bell CC
    J Neurophysiol; 2007 Mar; 97(3):2191-203. PubMed ID: 17229820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.