These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 1690012)

  • 1. Electrochemical aspects of cations in the cochlear hair cell of the chinchilla: a cellular model of the ion movement.
    Ikeda K; Morizono T
    Eur Arch Otorhinolaryngol; 1990; 247(1):43-7. PubMed ID: 1690012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical profile for potassium ions across the cochlear hair cell membranes of normal and noise-exposed guinea pigs.
    Konishi T; Salt AN
    Hear Res; 1983 Aug; 11(2):219-33. PubMed ID: 6619006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical profiles for monovalent ions in the stria vascularis: cellular model of ion transport mechanisms.
    Ikeda K; Morizono T
    Hear Res; 1989 Jun; 39(3):279-86. PubMed ID: 2753832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnesium ion activity in the mammalian endolymph measured with ion-selective microelectrodes.
    Ikeda K; Morizono T; Kusakari J; Takasaka T
    Arch Otorhinolaryngol; 1988; 245(3):142-4. PubMed ID: 3178561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Position-dependent expression of potassium currents by chick cochlear hair cells.
    Murrow BW
    J Physiol; 1994 Oct; 480 ( Pt 2)(Pt 2):247-59. PubMed ID: 7869243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph.
    Ricci AJ; Fettiplace R
    J Physiol; 1998 Jan; 506 ( Pt 1)(Pt 1):159-73. PubMed ID: 9481679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence imaging of Na+ influx via P2X receptors in cochlear hair cells.
    Housley GD; Raybould NP; Thorne PR
    Hear Res; 1998 May; 119(1-2):1-13. PubMed ID: 9641314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium, potassium, chloride and calcium concentrations measured in pigeon perilymph and endolymph.
    Sauer G; Richter CP; Klinke R
    Hear Res; 1999 Mar; 129(1-2):1-6. PubMed ID: 10190746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Movement of monovalent ions across the membranes of marginal cells of the stria vascularis in the guinea pig cochlea.
    Komune S; Nakagawa T; Hisashi K; Kimituki T; Uemura T
    ORL J Otorhinolaryngol Relat Spec; 1993; 55(2):61-7. PubMed ID: 8383309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cochlear potential difference between endolymph fluid and the hair cell's interior: a retold interpretation based on the Goldman equation.
    Kurbel S; Borzan V; Golem H; Dinjar K
    Med Glas (Zenica); 2017 Feb; 14(1):8-15. PubMed ID: 28165435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium currents in hair cells isolated from the cochlea of the chick.
    Fuchs PA; Evans MG
    J Physiol; 1990 Oct; 429():529-51. PubMed ID: 2277357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic changes in cochlear endolymph of the guinea pig induced by acoustic injury.
    Ikeda K; Kusakari J; Takasaka T
    Hear Res; 1988; 32(2-3):103-10. PubMed ID: 3129386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic environment of cochlear hair cells.
    Anniko M; Wróblewski R
    Hear Res; 1986; 22():279-93. PubMed ID: 3525484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Element content of intracochlear fluids, outer hair cells, and stria vascularis as determined by energy-dispersive roentgen ray analysis.
    Ryan AF; Wickham MG; Bone RC
    Otolaryngol Head Neck Surg (1979); 1979; 87(5):659-65. PubMed ID: 503532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic currents expressed in a cell line derived from the organ of Corti of the Immortomouse.
    Jagger DJ; Holley MC; Ashmore JF
    Pflugers Arch; 1999 Jun; 438(1):8-14. PubMed ID: 10370081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic currents of outer hair cells isolated from the guinea-pig cochlea.
    Housley GD; Ashmore JF
    J Physiol; 1992 Mar; 448():73-98. PubMed ID: 1593487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane potential measurement in isolated outer hair cells of the guinea pig cochlea using conventional microelectrodes.
    Sunose H; Ikeda K; Saito Y; Nishiyama A; Takasaka T
    Hear Res; 1992 Oct; 62(2):237-44. PubMed ID: 1429266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of changes in electrolyte composition of the perilymph on endocochlear potentials].
    Sagalovich BM; Mazo IL
    Fiziol Zh SSSR Im I M Sechenova; 1983 Mar; 69(3):357-61. PubMed ID: 6852291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [In vivo measurements of Na+ and K+ concentrations in the cochlear endolymph with glass microelectrodes].
    Suga F; Nakajima T
    Nihon Jibiinkoka Gakkai Kaiho; 1970 Aug; 73(8):1304-10. PubMed ID: 5465908
    [No Abstract]   [Full Text] [Related]  

  • 20. Ionic activities of the inner ear fluid and ionic permeabilities of the cochlear duct in endolymphatic hydrops of the guinea pig.
    Ikeda K; Morizono T
    Hear Res; 1991 Feb; 51(2):185-92. PubMed ID: 2032956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.