These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 16900302)
1. Minimum sample size requirements for bone density precision assessment produce inconsistency in clinical monitoring. Leslie WD; Moayyeri A; Osteoporos Int; 2006; 17(11):1673-80. PubMed ID: 16900302 [TBL] [Abstract][Full Text] [Related]
2. Factors affecting short-term bone density precision assessment and the effect on patient monitoring. Leslie WD J Bone Miner Res; 2008 Feb; 23(2):199-204. PubMed ID: 17937536 [TBL] [Abstract][Full Text] [Related]
3. The importance of spectrum bias on bone density monitoring in clinical practice. Leslie WD; Bone; 2006 Aug; 39(2):361-8. PubMed ID: 16537116 [TBL] [Abstract][Full Text] [Related]
4. Comparison of BMD precision for Prodigy and Delphi spine and femur scans. Shepherd JA; Fan B; Lu Y; Lewiecki EM; Miller P; Genant HK Osteoporos Int; 2006; 17(9):1303-8. PubMed ID: 16823544 [TBL] [Abstract][Full Text] [Related]
5. Sources of variability in bone mineral density measurements: implications for study design and analysis of bone loss. Nguyen TV; Sambrook PN; Eisman JA J Bone Miner Res; 1997 Jan; 12(1):124-35. PubMed ID: 9240735 [TBL] [Abstract][Full Text] [Related]
6. Which to use to evaluate change in BMD at follow-up: RMS-SD or RMS-%CV? Kiebzak GM; Morgan SL; Peace F J Clin Densitom; 2012; 15(1):26-31. PubMed ID: 22154429 [TBL] [Abstract][Full Text] [Related]
7. In vivo precision of the GE lunar iDXA for the assessment of lumbar spine, total hip, femoral neck, and total body bone mineral density in severely obese patients. Carver TE; Christou NV; Court O; Lemke H; Andersen RE J Clin Densitom; 2014; 17(1):109-15. PubMed ID: 23896494 [TBL] [Abstract][Full Text] [Related]
8. In vivo precision of the GE Lunar iDXA densitometer for the measurement of total-body, lumbar spine, and femoral bone mineral density in adults. Hind K; Oldroyd B; Truscott JG J Clin Densitom; 2010; 13(4):413-7. PubMed ID: 20705494 [TBL] [Abstract][Full Text] [Related]
9. Reproducibility of bone mineral density measurements using dual X-ray absorptiometry in daily clinical practice. El Maghraoui A; Do Santos Zounon AA; Jroundi I; Nouijai A; Ghazi M; Achemlal L; Bezza A; Tazi MA; Abouqual R Osteoporos Int; 2005 Dec; 16(12):1742-8. PubMed ID: 15937633 [TBL] [Abstract][Full Text] [Related]
10. The prevalence of significant left-right differences in hip bone mineral density. Hamdy R; Kiebzak GM; Seier E; Watts NB Osteoporos Int; 2006 Dec; 17(12):1772-80. PubMed ID: 17019523 [TBL] [Abstract][Full Text] [Related]
11. Precision and accuracy of measuring changes in bone mineral density by dual-energy X-ray absorptiometry. Tothill P; Hannan WJ Osteoporos Int; 2007 Nov; 18(11):1515-23. PubMed ID: 17483864 [TBL] [Abstract][Full Text] [Related]
12. Bone Mineral Density Precision for Individual and Combined Vertebrae Configurations From Lumbar Spine Dual-Energy X-Ray Absorptiometry Scans. Hind K; Oldroyd B J Clin Densitom; 2020; 23(4):673-677. PubMed ID: 31036447 [TBL] [Abstract][Full Text] [Related]
13. Sample size requirements for bone density precision assessments and effect on patient categorization: a Monte Carlo simulation study. Moayyeri A; Sadatsafavi M; Leslie WD; Bone; 2007 Oct; 41(4):679-84. PubMed ID: 17706478 [TBL] [Abstract][Full Text] [Related]
14. Estimating Lumbar Spine Least Significant Change for Fewer than Four Vertebrae: The Manitoba BMD Registry. Rosen H; Szalat A; Leslie WD J Clin Densitom; 2024; 27(2):101483. PubMed ID: 38479135 [TBL] [Abstract][Full Text] [Related]
15. Assessing Change in Spine Bone Density from Different Numbers and Combinations of Lumbar Vertebrae: The Manitoba BMD Registry. Szalat A; Rosen H; Leslie WD J Clin Densitom; 2024; 27(3):101493. PubMed ID: 38643731 [TBL] [Abstract][Full Text] [Related]
16. Precision of dual-energy X-ray absorptiometry of the knee and heel: methodology and implications for research to reduce bone mineral loss after spinal cord injury. Peppler WT; Kim WJ; Ethans K; Cowley KC Spinal Cord; 2017 May; 55(5):483-488. PubMed ID: 27995940 [TBL] [Abstract][Full Text] [Related]
17. Some physical and clinical factors influencing the measurement of precision error, least significant change, and bone mineral density in dual-energy x-ray absorptiometry. Frimeth J; Galiano E; Webster D J Clin Densitom; 2010; 13(1):29-35. PubMed ID: 19932980 [TBL] [Abstract][Full Text] [Related]
18. A generalized least significant change for individuals measured on different DXA systems. Shepherd JA; Lu Y J Clin Densitom; 2007; 10(3):249-58. PubMed ID: 17616413 [TBL] [Abstract][Full Text] [Related]
19. Tibial subchondral bone mineral density: sources of variability and reproducibility. Boudenot A; Pallu S; Toumi H; Loiseau Peres S; Dolleans E; Lespessailles E Osteoarthritis Cartilage; 2013 Oct; 21(10):1586-94. PubMed ID: 23887081 [TBL] [Abstract][Full Text] [Related]
20. Dual X-ray absorptiometry: clinical evaluation of a new cone-beam system. Blake GM; Knapp KM; Fogelman I Calcif Tissue Int; 2005 Feb; 76(2):113-20. PubMed ID: 15645160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]