BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16900302)

  • 1. Minimum sample size requirements for bone density precision assessment produce inconsistency in clinical monitoring.
    Leslie WD; Moayyeri A;
    Osteoporos Int; 2006; 17(11):1673-80. PubMed ID: 16900302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting short-term bone density precision assessment and the effect on patient monitoring.
    Leslie WD
    J Bone Miner Res; 2008 Feb; 23(2):199-204. PubMed ID: 17937536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of spectrum bias on bone density monitoring in clinical practice.
    Leslie WD;
    Bone; 2006 Aug; 39(2):361-8. PubMed ID: 16537116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of BMD precision for Prodigy and Delphi spine and femur scans.
    Shepherd JA; Fan B; Lu Y; Lewiecki EM; Miller P; Genant HK
    Osteoporos Int; 2006; 17(9):1303-8. PubMed ID: 16823544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources of variability in bone mineral density measurements: implications for study design and analysis of bone loss.
    Nguyen TV; Sambrook PN; Eisman JA
    J Bone Miner Res; 1997 Jan; 12(1):124-35. PubMed ID: 9240735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Which to use to evaluate change in BMD at follow-up: RMS-SD or RMS-%CV?
    Kiebzak GM; Morgan SL; Peace F
    J Clin Densitom; 2012; 15(1):26-31. PubMed ID: 22154429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo precision of the GE lunar iDXA for the assessment of lumbar spine, total hip, femoral neck, and total body bone mineral density in severely obese patients.
    Carver TE; Christou NV; Court O; Lemke H; Andersen RE
    J Clin Densitom; 2014; 17(1):109-15. PubMed ID: 23896494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo precision of the GE Lunar iDXA densitometer for the measurement of total-body, lumbar spine, and femoral bone mineral density in adults.
    Hind K; Oldroyd B; Truscott JG
    J Clin Densitom; 2010; 13(4):413-7. PubMed ID: 20705494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproducibility of bone mineral density measurements using dual X-ray absorptiometry in daily clinical practice.
    El Maghraoui A; Do Santos Zounon AA; Jroundi I; Nouijai A; Ghazi M; Achemlal L; Bezza A; Tazi MA; Abouqual R
    Osteoporos Int; 2005 Dec; 16(12):1742-8. PubMed ID: 15937633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The prevalence of significant left-right differences in hip bone mineral density.
    Hamdy R; Kiebzak GM; Seier E; Watts NB
    Osteoporos Int; 2006 Dec; 17(12):1772-80. PubMed ID: 17019523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision and accuracy of measuring changes in bone mineral density by dual-energy X-ray absorptiometry.
    Tothill P; Hannan WJ
    Osteoporos Int; 2007 Nov; 18(11):1515-23. PubMed ID: 17483864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone Mineral Density Precision for Individual and Combined Vertebrae Configurations From Lumbar Spine Dual-Energy X-Ray Absorptiometry Scans.
    Hind K; Oldroyd B
    J Clin Densitom; 2020; 23(4):673-677. PubMed ID: 31036447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sample size requirements for bone density precision assessments and effect on patient categorization: a Monte Carlo simulation study.
    Moayyeri A; Sadatsafavi M; Leslie WD;
    Bone; 2007 Oct; 41(4):679-84. PubMed ID: 17706478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating Lumbar Spine Least Significant Change for Fewer than Four Vertebrae: The Manitoba BMD Registry.
    Rosen H; Szalat A; Leslie WD
    J Clin Densitom; 2024; 27(2):101483. PubMed ID: 38479135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision of dual-energy X-ray absorptiometry of the knee and heel: methodology and implications for research to reduce bone mineral loss after spinal cord injury.
    Peppler WT; Kim WJ; Ethans K; Cowley KC
    Spinal Cord; 2017 May; 55(5):483-488. PubMed ID: 27995940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some physical and clinical factors influencing the measurement of precision error, least significant change, and bone mineral density in dual-energy x-ray absorptiometry.
    Frimeth J; Galiano E; Webster D
    J Clin Densitom; 2010; 13(1):29-35. PubMed ID: 19932980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generalized least significant change for individuals measured on different DXA systems.
    Shepherd JA; Lu Y
    J Clin Densitom; 2007; 10(3):249-58. PubMed ID: 17616413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tibial subchondral bone mineral density: sources of variability and reproducibility.
    Boudenot A; Pallu S; Toumi H; Loiseau Peres S; Dolleans E; Lespessailles E
    Osteoarthritis Cartilage; 2013 Oct; 21(10):1586-94. PubMed ID: 23887081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual X-ray absorptiometry: clinical evaluation of a new cone-beam system.
    Blake GM; Knapp KM; Fogelman I
    Calcif Tissue Int; 2005 Feb; 76(2):113-20. PubMed ID: 15645160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term precision of DXA scanning assessed over seven years in forty postmenopausal women.
    Patel R; Blake GM; Rymer J; Fogelman I
    Osteoporos Int; 2000; 11(1):68-75. PubMed ID: 10663361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.