These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 16900410)
1. Characterisation of a carrier-free dry powder aerosol formulation using inertial impaction and laser diffraction. Martin GP; MacRitchie HB; Marriott C; Zeng XM Pharm Res; 2006 Sep; 23(9):2210-9. PubMed ID: 16900410 [TBL] [Abstract][Full Text] [Related]
2. Influence of realistic inspiratory flow profiles on fine particle fractions of dry powder aerosol formulations. Martin GP; Marriott C; Zeng XM Pharm Res; 2007 Feb; 24(2):361-9. PubMed ID: 17177114 [TBL] [Abstract][Full Text] [Related]
3. Development of a laser diffraction method for the determination of the particle size of aerosolised powder formulations. Marriott C; MacRitchie HB; Zeng XM; Martin GP Int J Pharm; 2006 Dec; 326(1-2):39-49. PubMed ID: 16942848 [TBL] [Abstract][Full Text] [Related]
4. Correlation between inertial impaction and laser diffraction sizing data for aerosolized carrier-based dry powder formulations. Zeng XM; MacRitchie HB; Marriott C; Martin GP Pharm Res; 2006 Sep; 23(9):2200-9. PubMed ID: 16900411 [TBL] [Abstract][Full Text] [Related]
5. Correlations between cascade impactor analysis and laser diffraction techniques for the determination of the particle size of aerosolised powder formulations. Pilcer G; Vanderbist F; Amighi K Int J Pharm; 2008 Jun; 358(1-2):75-81. PubMed ID: 18359587 [TBL] [Abstract][Full Text] [Related]
6. Dry powder aerosols generated by standardized entrainment tubes from drug blends with lactose monohydrate: 1. Albuterol sulfate and disodium cromoglycate. Xu Z; Mansour HM; Mulder T; McLean R; Langridge J; Hickey AJ J Pharm Sci; 2010 Aug; 99(8):3398-414. PubMed ID: 20198688 [TBL] [Abstract][Full Text] [Related]
7. Humidity-induced changes of the aerodynamic properties of dry powder aerosol formulations containing different carriers. Zeng XM; MacRitchie HB; Marriott C; Martin GP Int J Pharm; 2007 Mar; 333(1-2):45-55. PubMed ID: 17064863 [TBL] [Abstract][Full Text] [Related]
8. Influence of the lactose grade within dry powder formulations of fluticasone propionate and terbutaline sulphate. Le VN; Bierend H; Robins E; Steckel H; Flament MP Int J Pharm; 2012 Jan; 422(1-2):75-82. PubMed ID: 22036653 [TBL] [Abstract][Full Text] [Related]
9. Dry powder aerosols generated by standardized entrainment tubes from drug blends with lactose monohydrate: 2. Ipratropium bromide monohydrate and fluticasone propionate. Xu Z; Mansour HM; Mulder T; McLean R; Langridge J; Hickey AJ J Pharm Sci; 2010 Aug; 99(8):3415-29. PubMed ID: 20222025 [TBL] [Abstract][Full Text] [Related]
10. Using Dry Dispersion Laser Diffraction to Assess Dispersibility in Spheronized Agglomerate Formulations. Arevalo F; Tignor S; Brunskill A; Goodey A AAPS PharmSciTech; 2024 Feb; 25(3):45. PubMed ID: 38396188 [TBL] [Abstract][Full Text] [Related]
11. Comparison of physical and inhalation properties of spray-dried and micronized terbutaline sulphate. Thi TH; Danède F; Descamps M; Flament MP Eur J Pharm Biopharm; 2008 Sep; 70(1):380-8. PubMed ID: 18504120 [TBL] [Abstract][Full Text] [Related]
12. Formulation and evaluation of insulin dry powder for inhalation. Mahesh Kumar T; Misra A Drug Dev Ind Pharm; 2006 Jul; 32(6):677-86. PubMed ID: 16885123 [TBL] [Abstract][Full Text] [Related]
13. Influence of flow rate on aerosol particle size distributions from pressurized and breath-actuated inhalers. Smith KJ; Chan HK; Brown KF J Aerosol Med; 1998; 11(4):231-45. PubMed ID: 10346666 [TBL] [Abstract][Full Text] [Related]
14. Optimisation of powders for pulmonary delivery using supercritical fluid technology. Rehman M; Shekunov BY; York P; Lechuga-Ballesteros D; Miller DP; Tan T; Colthorpe P Eur J Pharm Sci; 2004 May; 22(1):1-17. PubMed ID: 15113578 [TBL] [Abstract][Full Text] [Related]
15. Spray dried powders and powder blends of recombinant human deoxyribonuclease (rhDNase) for aerosol delivery. Chan HK; Clark A; Gonda I; Mumenthaler M; Hsu C Pharm Res; 1997 Apr; 14(4):431-7. PubMed ID: 9144727 [TBL] [Abstract][Full Text] [Related]
16. Comparison of nebulized particle size distribution with Malvern laser diffraction analyzer versus Andersen cascade impactor and low-flow Marple personal cascade impactor. Kwong WT; Ho SL; Coates AL J Aerosol Med; 2000; 13(4):303-14. PubMed ID: 11262437 [TBL] [Abstract][Full Text] [Related]
17. Design and application of a new modular adapter for laser diffraction characterization of inhalation aerosols. de Boer AH; Gjaltema D; Hagedoorn P; Schaller M; Witt W; Frijlink HW Int J Pharm; 2002 Dec; 249(1-2):233-45. PubMed ID: 12433451 [TBL] [Abstract][Full Text] [Related]
18. Powder properties and their influence on dry powder inhaler delivery of an antitubercular drug. Sethuraman VV; Hickey AJ AAPS PharmSciTech; 2002; 3(4):E28. PubMed ID: 12916922 [TBL] [Abstract][Full Text] [Related]
19. Limitations of high dose carrier based formulations. Yeung S; Traini D; Tweedie A; Lewis D; Church T; Young PM Int J Pharm; 2018 Jun; 544(1):141-152. PubMed ID: 29649519 [TBL] [Abstract][Full Text] [Related]
20. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler. Singh DJ; Jain RR; Soni PS; Abdul S; Darshana H; Gaikwad RV; Menon MD J Aerosol Med Pulm Drug Deliv; 2015 Aug; 28(4):254-67. PubMed ID: 25517187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]