BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

554 related articles for article (PubMed ID: 16900540)

  • 1. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait.
    Shelburne KB; Torry MR; Pandy MG
    J Orthop Res; 2006 Oct; 24(10):1983-90. PubMed ID: 16900540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern of anterior cruciate ligament force in normal walking.
    Shelburne KB; Pandy MG; Anderson FC; Torry MR
    J Biomech; 2004 Jun; 37(6):797-805. PubMed ID: 15111067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscles that do not cross the knee contribute to the knee adduction moment and tibiofemoral compartment loading during gait.
    Sritharan P; Lin YC; Pandy MG
    J Orthop Res; 2012 Oct; 30(10):1586-95. PubMed ID: 22467469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle and external load contribution to knee joint contact loads during normal gait.
    Winby CR; Lloyd DG; Besier TF; Kirk TB
    J Biomech; 2009 Oct; 42(14):2294-300. PubMed ID: 19647257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners.
    Wu G; Millon D
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):787-95. PubMed ID: 18342415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of bone-on-bone contact forces in the tibiofemoral joint during walking.
    Thambyah A; Pereira BP; Wyss U
    Knee; 2005 Oct; 12(5):383-8. PubMed ID: 16146627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of foot orthoses and valgus bracing on the knee adduction moment and medial joint load during gait.
    Shelburne KB; Torry MR; Steadman JR; Pandy MG
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):814-21. PubMed ID: 18362043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of individual muscles to hip joint contact force in normal walking.
    Correa TA; Crossley KM; Kim HJ; Pandy MG
    J Biomech; 2010 May; 43(8):1618-22. PubMed ID: 20176362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous prediction of muscle and contact forces in the knee during gait.
    Lin YC; Walter JP; Banks SA; Pandy MG; Fregly BJ
    J Biomech; 2010 Mar; 43(5):945-52. PubMed ID: 19962703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toe-out gait in patients with knee osteoarthritis partially transforms external knee adduction moment into flexion moment during early stance phase of gait: a tri-planar kinetic mechanism.
    Jenkyn TR; Hunt MA; Jones IC; Giffin JR; Birmingham TB
    J Biomech; 2008; 41(2):276-83. PubMed ID: 18061197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rabbit knee joint biomechanics: motion analysis and modeling of forces during hopping.
    Gushue DL; Houck J; Lerner AL
    J Orthop Res; 2005 Jul; 23(4):735-42. PubMed ID: 16022984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of the rabbit knee and ankle: muscle, ligament, and joint contact force predictions.
    Grover DM; Chen AA; Hazelwood SJ
    J Biomech; 2007; 40(12):2816-21. PubMed ID: 17353018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of knee coronal plane moment via modulation of center of pressure: a prospective gait analysis study.
    Haim A; Rozen N; Dekel S; Halperin N; Wolf A
    J Biomech; 2008 Oct; 41(14):3010-6. PubMed ID: 18805527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Associations among knee adduction moment, frontal plane ground reaction force, and lever arm during walking in patients with knee osteoarthritis.
    Hunt MA; Birmingham TB; Giffin JR; Jenkyn TR
    J Biomech; 2006; 39(12):2213-20. PubMed ID: 16168997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimentally reduced hip abductor function during walking: Implications for knee joint loads.
    Henriksen M; Aaboe J; Simonsen EB; Alkjaer T; Bliddal H
    J Biomech; 2009 Jun; 42(9):1236-40. PubMed ID: 19368926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait.
    Yang NH; Nayeb-Hashemi H; Canavan PK; Vaziri A
    J Orthop Res; 2010 Dec; 28(12):1539-47. PubMed ID: 20973057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis.
    Anderson FC; Goldberg SR; Pandy MG; Delp SL
    J Biomech; 2004 May; 37(5):731-7. PubMed ID: 15047002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and simulation of muscle forces of trans-tibial amputee to study effect of prosthetic alignment.
    Fang L; Jia X; Wang R
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1125-31. PubMed ID: 17942203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lines of action and moment arms of the major force-carrying structures crossing the human knee joint.
    Herzog W; Read LJ
    J Anat; 1993 Apr; 182 ( Pt 2)(Pt 2):213-30. PubMed ID: 8376196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loading and gait symmetry during level and stair walking in asymptomatic subjects with knee osteoarthritis: importance of quadriceps femoris in reducing impact force during heel strike?
    Liikavainio T; Isolehto J; Helminen HJ; Perttunen J; Lepola V; Kiviranta I; Arokoski JP; Komi PV
    Knee; 2007 Jun; 14(3):231-8. PubMed ID: 17451958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.