These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

553 related articles for article (PubMed ID: 16900540)

  • 41. Interaction between active and passive knee stabilizers during level walking.
    Schipplein OD; Andriacchi TP
    J Orthop Res; 1991 Jan; 9(1):113-9. PubMed ID: 1984041
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Knee extensor and flexor dominant gait patterns increase the knee frontal plane moment during walking.
    Kulmala JP; Äyrämö S; Avela J
    J Orthop Res; 2013 Jul; 31(7):1013-9. PubMed ID: 23417834
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tibio-femoral loading during human gait and stair climbing.
    Taylor WR; Heller MO; Bergmann G; Duda GN
    J Orthop Res; 2004 May; 22(3):625-32. PubMed ID: 15099644
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Individual muscle contributions to the axial knee joint contact force during normal walking.
    Sasaki K; Neptune RR
    J Biomech; 2010 Oct; 43(14):2780-4. PubMed ID: 20655046
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Predicting changes in knee adduction moment due to load-altering interventions from pressure distribution at the foot in healthy subjects.
    Erhart JC; Mündermann A; Mündermann L; Andriacchi TP
    J Biomech; 2008 Oct; 41(14):2989-94. PubMed ID: 18771767
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of mass and momentum of inertia alternation on individual muscle forces during swing phase of transtibial amputee gait.
    Dabiri Y; Najarian S; Eslami MR; Zahedi S; Moser D; Shirzad E; Allami M
    Kobe J Med Sci; 2010 Sep; 56(3):E92-7. PubMed ID: 21063155
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Immediate effects of valgus knee bracing on tibiofemoral contact forces and knee muscle forces.
    Hall M; Diamond LE; Lenton GK; Pizzolato C; Saxby DJ
    Gait Posture; 2019 Feb; 68():55-62. PubMed ID: 30458429
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Explaining the hip adduction moment variability during gait: Implications for hip abductor strengthening.
    Rutherford DJ; Hubley-Kozey C
    Clin Biomech (Bristol, Avon); 2009 Mar; 24(3):267-73. PubMed ID: 19136181
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of model complexity and problem formulation on the forces in the knee calculated using optimization methods.
    Hu CC; Lu TW; Chen SC
    Biomed Eng Online; 2013 Mar; 12():20. PubMed ID: 23496903
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Developing an estimate of daily cumulative loading for the knee: examining test-retest reliability.
    Robbins SM; Birmingham TB; Jones GR; Callaghan JP; Maly MR
    Gait Posture; 2009 Nov; 30(4):497-501. PubMed ID: 19692246
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A bioengineering analysis of force actions at the knee in normal and pathological gait.
    Harrington IJ
    Biomed Eng; 1976 May; 11(5):167-72. PubMed ID: 1276337
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biomechanics of changes in ACL and PCL material properties or prestrains in flexion under muscle force-implications in ligament reconstruction.
    Mesfar W; Shirazi-Adl A
    Comput Methods Biomech Biomed Engin; 2006 Aug; 9(4):201-9. PubMed ID: 17132528
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Muscle compensatory mechanisms during able-bodied toe walking.
    Sasaki K; Neptune RR; Burnfield JM; Mulroy SJ
    Gait Posture; 2008 Apr; 27(3):440-6. PubMed ID: 17624784
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of foot rotation on knee kinetics and hamstring activation in older adults with and without signs of knee osteoarthritis.
    Lynn SK; Costigan PA
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):779-86. PubMed ID: 18343001
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A functional model to describe the action of the adductor muscles at the hip in the transverse plane.
    Leighton RD
    Physiother Theory Pract; 2006 Nov; 22(5):251-62. PubMed ID: 17118893
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduction moment.
    Adouni M; Shirazi-Adl A
    J Biomech; 2014 May; 47(7):1696-703. PubMed ID: 24636718
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses.
    Adouni M; Shirazi-Adl A; Shirazi R
    J Biomech; 2012 Aug; 45(12):2149-56. PubMed ID: 22721726
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Control of frontal plane motion of the hindlimbs in the unrestrained walking cat.
    Misiaszek JE
    J Neurophysiol; 2006 Oct; 96(4):1816-28. PubMed ID: 16823027
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo knee moments and shear after total knee arthroplasty.
    D'Lima DD; Patil S; Steklov N; Chien S; Colwell CW
    J Biomech; 2007; 40 Suppl 1():S11-7. PubMed ID: 17462659
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gait analysis system for assessment of dynamic loading axis of the knee.
    Kawakami H; Sugano N; Yonenobu K; Yoshikawa H; Ochi T; Hattori A; Suzuki N
    Gait Posture; 2005 Jan; 21(1):125-30. PubMed ID: 15536041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.