BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 16901054)

  • 1. Early wear development in a novel mechanical heart valve prosthesis made from polymeric materials.
    Medart D; Steinseifer U; Reul H; Schmitz-Rode T
    J Heart Valve Dis; 2006 Jul; 15(4):557-62. PubMed ID: 16901054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early wear development in a novel mechanical heart valve prosthesis made from polymeric materials.
    Medart D; Steinseifer U; Reul H; Schmitz-Rode T
    J Heart Valve Dis; 2006 Sep; 15(5):710-5. PubMed ID: 17044379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-vitro assessment of the wear development mechanism and stabilization of wear in the Edwards MIRA/Sorin Bicarbon mechanical heart valve orifice ring.
    Reul H; Schmitz C; Pfaff EM; Hohlstein C; Schmidt PA; Rau G; Arru P
    J Heart Valve Dis; 2002 May; 11(3):409-18; discussion 418. PubMed ID: 12056736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical cardiac valve prostheses: wear characteristics and magnitudes in three bileaflet valves.
    Elizondo DR; Boland ED; Ambrus JR; Kurk JL
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S115-23; discussion 144-8. PubMed ID: 8803764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wear assessment in bileaflet heart valves.
    Arru P; Rinaldi S; Stacchino C; Vallana F
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S133-43; discussion 144-8. PubMed ID: 8803766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Durability of pyrolytic carbon-containing heart valve prostheses.
    Schoen FJ; Titus JL; Lawrie GM
    J Biomed Mater Res; 1982 Sep; 16(5):559-70. PubMed ID: 7130212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pitfalls and outcomes from accelerated wear testing of mechanical heart valves.
    Campbell A; Baldwin T; Peterson G; Bryant J; Ryder K
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S124-32; discussion 144-8. PubMed ID: 8803765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the durability of pyrolytic carbon in vivo.
    Haubold AD
    Med Prog Technol; 1994; 20(3-4):201-8. PubMed ID: 7877566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro testing of heart valve wear outside of the manufacturers laboratory--requirements and controversies.
    Reul H; Eichler M; Potthast K; Schmitz C; Rau G
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S97-103; discussion 103-4. PubMed ID: 8803761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo comparison of hemocompatibility of materials used in mechanical heart valves.
    Yang Y; Franzen SF; Olin CL
    J Heart Valve Dis; 1996 Sep; 5(5):532-7. PubMed ID: 8894994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Durability/wear testing of heart valve substitutes.
    Reul H; Potthast K
    J Heart Valve Dis; 1998 Mar; 7(2):151-7. PubMed ID: 9587854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural integrity assessment of heart valve prostheses: a damage tolerance analysis of the CarboMedics Prosthetic Heart Valve.
    Ryder JK; Cao H
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S86-96. PubMed ID: 8803760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and in vitro performance of a novel bileaflet mechanical heart valve prosthesis.
    Medart D; Schmitz C; Rau G; Reul H
    Int J Artif Organs; 2005 Mar; 28(3):256-63. PubMed ID: 15818549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Material properties, biocompatibility, and wear resistance of the Medtronic pyrolytic carbon.
    Leuer LH; Gross JM; Johnson KM
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S105-9; discussion 110. PubMed ID: 8803762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pure pyrolytic carbon: preparation and properties of a new material, On-X carbon for mechanical heart valve prostheses.
    Ely JL; Emken MR; Accuntius JA; Wilde DS; Haubold AD; More RB; Bokros JC
    J Heart Valve Dis; 1998 Nov; 7(6):626-32. PubMed ID: 9870196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of wear patterns in vivo and in vitro for Björk-Shiley Delrin heart valve discs.
    Thyagarajan K; Conlin C; Milligan HL; Wieting DW
    J Heart Valve Dis; 1996 Aug; 5 Suppl 2():S206-15. PubMed ID: 8905521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel "biomechanical" polymeric valve prostheses with special design for aortic and mitral position: a future option for pediatric patients?
    Sachweh JS; Daebritz SH
    ASAIO J; 2006; 52(5):575-80. PubMed ID: 16966862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vivo method for testing hemocompatibility of materials used in prosthetic heart valves.
    Yang Y; Franzen S; Tengvall P; Olin C
    J Heart Valve Dis; 1996 Sep; 5(5):526-31. PubMed ID: 8894993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface engineering of artificial heart valve disks using nanostructured thin films deposited by chemical vapour deposition and sol-gel methods.
    Jackson MJ; Robinson GM; Ali N; Kousar Y; Mei S; Gracio J; Taylor H; Ahmed W
    J Med Eng Technol; 2006; 30(5):323-9. PubMed ID: 16980288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and structural properties of a novel hybrid heart valve scaffold for tissue engineering.
    Grabow N; Schmohl K; Khosravi A; Philipp M; Scharfschwerdt M; Graf B; Stamm C; Haubold A; Schmitz KP; Steinhoff G
    Artif Organs; 2004 Nov; 28(11):971-9. PubMed ID: 15504112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.