These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 16901088)

  • 1. Reconstruction of phylogenetic relationships from metabolic pathways based on the enzyme hierarchy and the gene ontology.
    Clemente JC; Satou K; Valiente G
    Genome Inform; 2005; 16(2):45-55. PubMed ID: 16901088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic reconstruction from non-genomic data.
    Clemente JC; Satou K; Valiente G
    Bioinformatics; 2007 Jan; 23(2):e110-5. PubMed ID: 17237077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification.
    Jones CM; Stres B; Rosenquist M; Hallin S
    Mol Biol Evol; 2008 Sep; 25(9):1955-66. PubMed ID: 18614527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraint-based functional similarity of metabolic genes: going beyond network topology.
    Rokhlenko O; Shlomi T; Sharan R; Ruppin E; Pinter RY
    Bioinformatics; 2007 Aug; 23(16):2139-46. PubMed ID: 17586548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mining biological networks for unknown pathways.
    Cakmak A; Ozsoyoglu G
    Bioinformatics; 2007 Oct; 23(20):2775-83. PubMed ID: 17766269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of common substructures of metabolic compounds within the different organism groups.
    Muto A; Hattori M; Kanehisa M
    Genome Inform; 2007; 18():299-307. PubMed ID: 18546497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of interactiveness between small molecules and enzymes by combining gene ontology and compound similarity.
    Chen L; Qian Z; Fen K; Cai Y
    J Comput Chem; 2010 Jun; 31(8):1766-76. PubMed ID: 20033913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathway alignment: application to the comparative analysis of glycolytic enzymes.
    Dandekar T; Schuster S; Snel B; Huynen M; Bork P
    Biochem J; 1999 Oct; 343 Pt 1(Pt 1):115-24. PubMed ID: 10493919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deriving phylogenetic trees from the similarity analysis of metabolic pathways.
    Heymans M; Singh AK
    Bioinformatics; 2003; 19 Suppl 1():i138-46. PubMed ID: 12855450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme maintenance effort as criterion for the characterization of alternative pathways and length distribution of isofunctional enzymes.
    Hoppe A; Richter C; Holzhütter HG
    Biosystems; 2011 Aug; 105(2):122-9. PubMed ID: 21664944
    [No Abstract]   [Full Text] [Related]  

  • 11. Modeling the complex dynamics of enzyme-pathway coevolution.
    Schütte M; Skupin A; Segrè D; Ebenhöh O
    Chaos; 2010 Dec; 20(4):045115. PubMed ID: 21198127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of orphan metabolic activities.
    Chen L; Vitkup D
    Trends Biotechnol; 2007 Aug; 25(8):343-8. PubMed ID: 17580095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme sequence similarity improves the reaction alignment method for cross-species pathway comparison.
    Ovacik MA; Androulakis IP
    Toxicol Appl Pharmacol; 2013 Sep; 271(3):363-71. PubMed ID: 20851138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A global gene evolution analysis on Vibrionaceae family using phylogenetic profile.
    Vitulo N; Vezzi A; Romualdi C; Campanaro S; Valle G
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S23. PubMed ID: 17430568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple and fast alignment of metabolic pathways by exploiting local diversity.
    Wernicke S; Rasche F
    Bioinformatics; 2007 Aug; 23(15):1978-85. PubMed ID: 17540683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alignment of metabolic pathways.
    Pinter RY; Rokhlenko O; Yeger-Lotem E; Ziv-Ukelson M
    Bioinformatics; 2005 Aug; 21(16):3401-8. PubMed ID: 15985496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncovering metabolic objectives pursued by changes of enzyme levels.
    Hoffmann S; Holzhütter HG
    Ann N Y Acad Sci; 2009 Mar; 1158():57-70. PubMed ID: 19348632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel feature-based method for whole genome phylogenetic analysis without alignment: application to HEV genotyping and subtyping.
    Liu Z; Meng J; Sun X
    Biochem Biophys Res Commun; 2008 Apr; 368(2):223-30. PubMed ID: 18230342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolites: a helping hand for pathway evolution?
    Schmidt S; Sunyaev S; Bork P; Dandekar T
    Trends Biochem Sci; 2003 Jun; 28(6):336-41. PubMed ID: 12826406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using median sets for inferring phylogenetic trees.
    Bernt M; Merkle D; Middendorf M
    Bioinformatics; 2007 Jan; 23(2):e129-35. PubMed ID: 17237080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.