These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 16901241)
1. Using a virtual reality system to study balance and walking in a virtual outdoor environment: a pilot study. Nyberg L; Lundin-Olsson L; Sondell B; Backman A; Holmlund K; Eriksson S; Stenvall M; Rosendahl E; Maxhall M; Bucht G Cyberpsychol Behav; 2006 Aug; 9(4):388-95. PubMed ID: 16901241 [TBL] [Abstract][Full Text] [Related]
2. Assessing balance through the use of a low-cost head-mounted display in older adults: a pilot study. Saldana SJ; Marsh AP; Rejeski WJ; Haberl JK; Wu P; Rosenthal S; Ip EH Clin Interv Aging; 2017; 12():1363-1370. PubMed ID: 28883717 [TBL] [Abstract][Full Text] [Related]
3. Balance, attention, and dual-task performance during walking after brain injury: associations with falls history. McCulloch KL; Buxton E; Hackney J; Lowers S J Head Trauma Rehabil; 2010; 25(3):155-63. PubMed ID: 20473089 [TBL] [Abstract][Full Text] [Related]
4. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study. Basso Moro S; Bisconti S; Muthalib M; Spezialetti M; Cutini S; Ferrari M; Placidi G; Quaresima V Neuroimage; 2014 Jan; 85 Pt 1():451-60. PubMed ID: 23684867 [TBL] [Abstract][Full Text] [Related]
5. Effects of unexpected visual motion on postural sway and motion sickness. Dennison M; D'Zmura M Appl Ergon; 2018 Sep; 71():9-16. PubMed ID: 29764619 [TBL] [Abstract][Full Text] [Related]
6. Postural adaptation in elderly patients with instability and risk of falling after balance training using a virtual-reality system. Suárez H; Suárez A; Lavinsky L Int Tinnitus J; 2006; 12(1):41-4. PubMed ID: 17147038 [TBL] [Abstract][Full Text] [Related]
7. Transfer effects of fall training on balance performance and spatiotemporal gait parameters in healthy community-dwelling older adults: a pilot study. Donath L; Faude O; Bridenbaugh SA; Roth R; Soltermann M; Kressig RW; Zahner L J Aging Phys Act; 2014 Jul; 22(3):324-33. PubMed ID: 23881433 [TBL] [Abstract][Full Text] [Related]
8. The effect of a non-steroidal anti-inflammatory drug on two important predictors for accidental falls: postural balance and manual reaction time. A randomized, controlled pilot study. Hegeman J; Nienhuis B; van den Bemt B; Weerdesteyn V; van Limbeek J; Duysens J Hum Mov Sci; 2011 Apr; 30(2):384-95. PubMed ID: 20708287 [TBL] [Abstract][Full Text] [Related]
9. Walking in an unstable environment: strategies used by transtibial amputees to prevent falling during gait. Hak L; van Dieën JH; van der Wurff P; Prins MR; Mert A; Beek PJ; Houdijk H Arch Phys Med Rehabil; 2013 Nov; 94(11):2186-93. PubMed ID: 23916618 [TBL] [Abstract][Full Text] [Related]
10. Does walking in a virtual environment induce unstable gait? An examination of vertical ground reaction forces. Hollman JH; Brey RH; Bang TJ; Kaufman KR Gait Posture; 2007 Jul; 26(2):289-94. PubMed ID: 17056258 [TBL] [Abstract][Full Text] [Related]
11. Movement strategies and sensory reweighting in tandem stance: differences between trained tightrope walkers and untrained subjects. Honegger F; Tielkens RJ; Allum JH Neuroscience; 2013 Dec; 254():285-300. PubMed ID: 24090964 [TBL] [Abstract][Full Text] [Related]
12. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations. Hak L; Houdijk H; Steenbrink F; Mert A; van der Wurff P; Beek PJ; van Dieën JH Gait Posture; 2012 Jun; 36(2):260-4. PubMed ID: 22464635 [TBL] [Abstract][Full Text] [Related]
13. Predicting accidental falls in people with multiple sclerosis -- a longitudinal study. Nilsagård Y; Lundholm C; Denison E; Gunnarsson LG Clin Rehabil; 2009 Mar; 23(3):259-69. PubMed ID: 19218300 [TBL] [Abstract][Full Text] [Related]
14. Prediction of foot clearance parameters as a precursor to forecasting the risk of tripping and falling. Lai DT; Taylor SB; Begg RK Hum Mov Sci; 2012 Apr; 31(2):271-83. PubMed ID: 21035220 [TBL] [Abstract][Full Text] [Related]
15. The effect of two types of virtual reality on voluntary center of pressure displacement. Lott A; Bisson E; Lajoie Y; McComas J; Sveistrup H Cyberpsychol Behav; 2003 Oct; 6(5):477-85. PubMed ID: 14583123 [TBL] [Abstract][Full Text] [Related]
16. Control Mechanisms of Static and Dynamic Balance in Adults With and Without Vestibular Dysfunction in Oculus Virtual Environments. Lubetzky AV; Hujsak BD; Kelly JL; Fu G; Perlin K PM R; 2018 Nov; 10(11):1223-1236.e2. PubMed ID: 30503230 [TBL] [Abstract][Full Text] [Related]
17. Use of mobility aids reduces attentional demand in challenging walking conditions. Miyasike-daSilva V; Tung JY; Zabukovec JR; McIlroy WE Gait Posture; 2013 Feb; 37(2):287-9. PubMed ID: 22840321 [TBL] [Abstract][Full Text] [Related]
19. A novel video-based paradigm to study the mechanisms underlying age- and falls risk-related differences in gaze behaviour during walking. Stanley J; Hollands M Ophthalmic Physiol Opt; 2014 Jul; 34(4):459-69. PubMed ID: 24836288 [TBL] [Abstract][Full Text] [Related]
20. Effects of repeated optic flow stimulation on gait termination in humans. Okazaki S; Nishiike S; Watanabe H; Imai T; Uno A; Kitahara T; Horii A; Kamakura T; Takimoto Y; Takeda N; Inohara H Acta Otolaryngol; 2013 Mar; 133(3):246-52. PubMed ID: 23176088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]