These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
72 related articles for article (PubMed ID: 16901538)
1. The effect of water uptake on the behaviour of hydrophilic cements in confined environments. Boesel LF; Reis RL Biomaterials; 2006 Nov; 27(33):5627-33. PubMed ID: 16901538 [TBL] [Abstract][Full Text] [Related]
2. The in vitro bioactivity of two novel hydrophilic, partially degradable bone cements. Boesel LF; Cachinho SC; Fernandes MH; Reis RL Acta Biomater; 2007 Mar; 3(2):175-82. PubMed ID: 17166784 [TBL] [Abstract][Full Text] [Related]
3. Hydrophilic matrices to be used as bioactive and degradable bone cements. Boesel LF; Reis RL J Mater Sci Mater Med; 2004 Apr; 15(4):503-6. PubMed ID: 15332625 [TBL] [Abstract][Full Text] [Related]
4. Influence of different surface treatments on the short-term bond strength and durability between a zirconia post and a composite resin core material. Akgungor G; Sen D; Aydin M J Prosthet Dent; 2008 May; 99(5):388-99. PubMed ID: 18456050 [TBL] [Abstract][Full Text] [Related]
5. Comparative study on the properties of acrylic bone cements prepared with either aliphatic or aromatic functionalized methacrylates. Cervantes-Uc JM; Vázquez-Torres H; Cauich-Rodríguez JV; Vázquez-Lasa B; del Barrio JS Biomaterials; 2005 Jul; 26(19):4063-72. PubMed ID: 15664633 [TBL] [Abstract][Full Text] [Related]
6. Incorporation of alpha-amylase enzyme and a bioactive filler into hydrophilic, partially degradable, and bioactive cements (HDBCs) as a new approach to tailor simultaneously their degradation and bioactive behavior. Boesel LF; Azevedo HS; Reis RL Biomacromolecules; 2006 Sep; 7(9):2600-9. PubMed ID: 16961323 [TBL] [Abstract][Full Text] [Related]
7. Effect of surface modification of polymer beads on the mechanical properties of acrylic bone cement. Shafranska O; Kokott A; Sülthaus D; Ziegler G J Biomater Sci Polym Ed; 2007; 18(4):439-51. PubMed ID: 17540118 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of oligo(ethylene glycol) dimethacrylates effects on the properties of new biodegradable bone cement compositions. Lukaszczyk J; Rmiga M; Jaszcz K; Adler HJ; Jähne E; Kaczmarek M Macromol Biosci; 2005 Jan; 5(1):64-9. PubMed ID: 15635717 [TBL] [Abstract][Full Text] [Related]
9. Performance of bone cements: are current preclinical specifications adequate? Nottrott M; Mølster AO; Moldestad IO; Walsh WR; Gjerdet NR Acta Orthop; 2008 Dec; 79(6):826-31. PubMed ID: 19085502 [TBL] [Abstract][Full Text] [Related]
10. Effect of sodium carbonate solution on self-setting properties of tricalcium silicate bone cement. Zhiguang Huan ; Jiang Chang J Biomater Appl; 2008 Nov; 23(3):247-62. PubMed ID: 18667460 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the flexural strength of five adhesive resin cements. Pace LL; Hummel SK; Marker VA; Bolouri A J Prosthodont; 2007; 16(1):18-24. PubMed ID: 17244303 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the influence of the addition of biodegradable polymer matrices in the formulation of self-curing polymer systems for biomedical purposes. Franco-Marquès E; Méndez JA; Gironès J; Ginebra MP; Pèlach MA Acta Biomater; 2009 Oct; 5(8):2953-62. PubMed ID: 19435615 [TBL] [Abstract][Full Text] [Related]
13. The behavior of novel hydrophilic composite bone cements in simulated body fluids. Boesel LF; Fernandes MH; Reis RL J Biomed Mater Res B Appl Biomater; 2004 Aug; 70(2):368-77. PubMed ID: 15264321 [TBL] [Abstract][Full Text] [Related]
14. Iron oxide nanoparticles significantly enhances the injectability of apatitic bone cement for vertebroplasty. Vlad MD; del Valle LJ; Barracó M; Torres R; López J; Fernández E Spine (Phila Pa 1976); 2008 Oct; 33(21):2290-8. PubMed ID: 18827693 [TBL] [Abstract][Full Text] [Related]
15. Development of a novel cement by conversion of hopeite in set zinc phosphate cement into biocompatible apatite. Horiuchi S; Asaoka K; Tanaka E Biomed Mater Eng; 2009; 19(2-3):121-31. PubMed ID: 19581705 [TBL] [Abstract][Full Text] [Related]
16. Structure-property relationships of DEAEM-containing bone cements: effect of the substitution of a methylene group by an aromatic ring. Cervantes-Uc JM; Cauich-Rodríguez JV; Vázquez-Torres H J Biomater Sci Polym Ed; 2007; 18(1):1-16. PubMed ID: 17274447 [TBL] [Abstract][Full Text] [Related]
17. Drug-binding hydrogels of hyaluronic acid functionalized with beta-cyclodextrin. Zawko SA; Truong Q; Schmidt CE J Biomed Mater Res A; 2008 Dec; 87(4):1044-52. PubMed ID: 18257063 [TBL] [Abstract][Full Text] [Related]
18. Acrylic bone cements with bismuth salicylate: Behavior in simulated physiological conditions. Hernández L; Vázquez B; López-Bravo A; Parra J; Goñi I; Gurruchaga M J Biomed Mater Res A; 2007 Feb; 80(2):321-32. PubMed ID: 16960839 [TBL] [Abstract][Full Text] [Related]
19. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system. Huan Z; Chang J Acta Biomater; 2009 May; 5(4):1253-64. PubMed ID: 18996779 [TBL] [Abstract][Full Text] [Related]
20. Development of a testing methodology to quantify bone load transfer patterns for multiple stemmed implants in a single bone with an application in the distal ulna. Austman RL; Quenneville CE; Beaton BJ; King GJ; Gordon KD; Dunning CE J Biomech Eng; 2008 Apr; 130(2):024502. PubMed ID: 18412513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]