These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 16901764)
1. Oncogenic and metastatic properties of preprotachykinin-I and neurokinin-1 genes. Singh AS; Caplan A; Corcoran KE; Fernandez JS; Preziosi M; Rameshwar P Vascul Pharmacol; 2006 Oct; 45(4):235-42. PubMed ID: 16901764 [TBL] [Abstract][Full Text] [Related]
2. Bone marrow stroma influences transforming growth factor-beta production in breast cancer cells to regulate c-myc activation of the preprotachykinin-I gene in breast cancer cells. Oh HS; Moharita A; Potian JG; Whitehead IP; Livingston JC; Castro TA; Patel PS; Rameshwar P Cancer Res; 2004 Sep; 64(17):6327-36. PubMed ID: 15342422 [TBL] [Abstract][Full Text] [Related]
3. Transformation of breast cells by truncated neurokinin-1 receptor is secondary to activation by preprotachykinin-A peptides. Patel HJ; Ramkissoon SH; Patel PS; Rameshwar P Proc Natl Acad Sci U S A; 2005 Nov; 102(48):17436-41. PubMed ID: 16291810 [TBL] [Abstract][Full Text] [Related]
4. Increased expression of preprotachykinin-I and neurokinin receptors in human breast cancer cells: implications for bone marrow metastasis. Singh D; Joshi DD; Hameed M; Qian J; Gascón P; Maloof PB; Mosenthal A; Rameshwar P Proc Natl Acad Sci U S A; 2000 Jan; 97(1):388-93. PubMed ID: 10618428 [TBL] [Abstract][Full Text] [Related]
5. Effect of truncated neurokinin-1 receptor expression changes on the interaction between human breast cancer and bone marrow-derived mesenchymal stem cells. Zhou Y; Zuo D; Wang M; Zhang Y; Yu M; Yang J; Yao Z Genes Cells; 2014 Sep; 19(9):676-91. PubMed ID: 25130457 [TBL] [Abstract][Full Text] [Related]
6. Nuclear factor-kappaB is central to the expression of truncated neurokinin-1 receptor in breast cancer: implication for breast cancer cell quiescence within bone marrow stroma. Ramkissoon SH; Patel PS; Taborga M; Rameshwar P Cancer Res; 2007 Feb; 67(4):1653-9. PubMed ID: 17308106 [TBL] [Abstract][Full Text] [Related]
7. Facilitating role of preprotachykinin-I gene in the integration of breast cancer cells within the stromal compartment of the bone marrow: a model of early cancer progression. Rao G; Patel PS; Idler SP; Maloof P; Gascon P; Potian JA; Rameshwar P Cancer Res; 2004 Apr; 64(8):2874-81. PubMed ID: 15087406 [TBL] [Abstract][Full Text] [Related]
8. Nuclear factor-kappaB accounts for the repressor effects of high stromal cell-derived factor-1alpha levels on Tac1 expression in nontumorigenic breast cells. Corcoran KE; Rameshwar P Mol Cancer Res; 2007 Apr; 5(4):373-81. PubMed ID: 17409218 [TBL] [Abstract][Full Text] [Related]
9. SDF-1alpha regulation in breast cancer cells contacting bone marrow stroma is critical for normal hematopoiesis. Moharita AL; Taborga M; Corcoran KE; Bryan M; Patel PS; Rameshwar P Blood; 2006 Nov; 108(10):3245-52. PubMed ID: 16857992 [TBL] [Abstract][Full Text] [Related]
10. The p160 family coactivators regulate breast cancer cell proliferation and invasion through autocrine/paracrine activity of SDF-1alpha/CXCL12. Kishimoto H; Wang Z; Bhat-Nakshatri P; Chang D; Clarke R; Nakshatri H Carcinogenesis; 2005 Oct; 26(10):1706-15. PubMed ID: 15917309 [TBL] [Abstract][Full Text] [Related]
11. Autocrine proliferation of neuroblastoma cells is partly mediated through neurokinin receptors: relevance to bone marrow metastasis. Mukerji I; Ramkissoon SH; Reddy KK; Rameshwar P J Neurooncol; 2005 Jan; 71(2):91-8. PubMed ID: 15690122 [TBL] [Abstract][Full Text] [Related]
12. A role for tachykinins in female mouse and rat reproductive function. Pintado CO; Pinto FM; Pennefather JN; Hidalgo A; Baamonde A; Sanchez T; Candenas ML Biol Reprod; 2003 Sep; 69(3):940-6. PubMed ID: 12773411 [TBL] [Abstract][Full Text] [Related]
13. Carboxyl-terminal Src kinase homologous kinase negatively regulates the chemokine receptor CXCR4 through YY1 and impairs CXCR4/CXCL12 (SDF-1alpha)-mediated breast cancer cell migration. Lee BC; Lee TH; Zagozdzon R; Avraham S; Usheva A; Avraham HK Cancer Res; 2005 Apr; 65(7):2840-5. PubMed ID: 15805285 [TBL] [Abstract][Full Text] [Related]
14. Cloning of human preprotachykinin-I promoter and the role of cyclic adenosine 5'-monophosphate response elements in its expression by IL-1 and stem cell factor. Qian J; Yehia G; Molina C; Fernandes A; Donnelly R; Anjaria D; Gascon P; Rameshwar P J Immunol; 2001 Feb; 166(4):2553-61. PubMed ID: 11160316 [TBL] [Abstract][Full Text] [Related]
15. Synergy between truncated c-Met (cyto-Met) and c-Myc in liver oncogenesis: importance of TGF-beta signalling in the control of liver homeostasis and transformation. Amicone L; Terradillos O; Calvo L; Costabile B; Cicchini C; Della Rocca C; Lozupone F; Piacentini M; Buendia MA; Tripodi M Oncogene; 2002 Feb; 21(9):1335-45. PubMed ID: 11857077 [TBL] [Abstract][Full Text] [Related]
16. Stromal derived growth factor-1alpha: another mediator in neural-emerging immune system through Tac1 expression in bone marrow stromal cells. Corcoran KE; Patel N; Rameshwar P J Immunol; 2007 Feb; 178(4):2075-82. PubMed ID: 17277111 [TBL] [Abstract][Full Text] [Related]
17. Differential dependence of the tumorigenicity of chemically transformed rat liver epithelial cells on autocrine production of transforming growth factor alpha. Duddy SK; Earp HS; Russell WE; Smith GJ; Grisham JW Cell Growth Differ; 1995 Mar; 6(3):251-61. PubMed ID: 7794793 [TBL] [Abstract][Full Text] [Related]
18. Effects of neonatal capsaicin treatment in the neutrophil production, and expression of preprotachykinin-I and tachykinin receptors in the rat bone marrow. Franco-Penteado CF; De Souza IA; Lima CS; Teixeira SA; Muscara MN; De Nucci G; Antunes E Neurosci Lett; 2006 Oct; 407(1):70-3. PubMed ID: 16959413 [TBL] [Abstract][Full Text] [Related]
19. Differential effects of TGF-β1 and FGF-2 on SDF-1α expression in human periodontal ligament cells derived from deciduous teeth in vitro. Hasegawa T; Chosa N; Asakawa T; Yoshimura Y; Fujihara Y; Kitamura T; Tanaka M; Ishisaki A; Mitome M Int J Mol Med; 2012 Jul; 30(1):35-40. PubMed ID: 22469823 [TBL] [Abstract][Full Text] [Related]
20. Genetic manipulation of stromal cell-derived factor-1 attests the pivotal role of the autocrine SDF-1-CXCR4 pathway in the aggressiveness of breast cancer cells. Kang H; Mansel RE; Jiang WG Int J Oncol; 2005 May; 26(5):1429-34. PubMed ID: 15809737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]