These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 16902751)

  • 21. Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells.
    Stefan E; Wiesner B; Baillie GS; Mollajew R; Henn V; Lorenz D; Furkert J; Santamaria K; Nedvetsky P; Hundsrucker C; Beyermann M; Krause E; Pohl P; Gall I; MacIntyre AN; Bachmann S; Houslay MD; Rosenthal W; Klussmann E
    J Am Soc Nephrol; 2007 Jan; 18(1):199-212. PubMed ID: 17135396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specificity in the cAMP/PKA signaling pathway. Differential expression,regulation, and subcellular localization of subunits of PKA.
    Skalhegg BS; Tasken K
    Front Biosci; 2000 Aug; 5():D678-93. PubMed ID: 10922298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A RSK(y) relationship with promiscuous PKA.
    Houslay MD
    Sci STKE; 2006 Aug; 2006(349):pe32. PubMed ID: 16926362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphoinositide 3-kinase gamma regulates cardiac contractility by locally controlling cyclic adenosine monophosphate levels.
    Kerfant BG; Rose RA; Sun H; Backx PH
    Trends Cardiovasc Med; 2006 Oct; 16(7):250-6. PubMed ID: 16980183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compartmentalized cAMP signalling: a personal perspective.
    Scott JD
    Biochem Soc Trans; 2006 Aug; 34(Pt 4):465-7. PubMed ID: 16856833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compartmentalized signalling: spatial regulation of cAMP by the action of compartmentalized phosphodiesterases.
    Baillie GS
    FEBS J; 2009 Apr; 276(7):1790-9. PubMed ID: 19243430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Caveolae compartmentalise β2-adrenoceptor signals by curtailing cAMP production and maintaining phosphatase activity in the sarcoplasmic reticulum of the adult ventricular myocyte.
    Macdougall DA; Agarwal SR; Stopford EA; Chu H; Collins JA; Longster AL; Colyer J; Harvey RD; Calaghan S
    J Mol Cell Cardiol; 2012 Feb; 52(2):388-400. PubMed ID: 21740911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Imaging cAMP nanodomains in the heart.
    Chao YC; Surdo NC; Pantano S; Zaccolo M
    Biochem Soc Trans; 2019 Oct; 47(5):1383-1392. PubMed ID: 31670375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. cAMP signaling in subcellular compartments.
    Lefkimmiatis K; Zaccolo M
    Pharmacol Ther; 2014 Sep; 143(3):295-304. PubMed ID: 24704321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. H-89 decreases the gain of excitation-contraction coupling and attenuates calcium sparks in the absence of beta-adrenergic stimulation.
    Parks RJ; Howlett SE
    Eur J Pharmacol; 2012 Sep; 691(1-3):163-72. PubMed ID: 22796673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disruption of protein kinase A localization using a trans-activator of transcription (TAT)-conjugated A-kinase-anchoring peptide reduces cardiac function.
    Patel HH; Hamuro LL; Chun BJ; Kawaraguchi Y; Quick A; Rebolledo B; Pennypacker J; Thurston J; Rodriguez-Pinto N; Self C; Olson G; Insel PA; Giles WR; Taylor SS; Roth DM
    J Biol Chem; 2010 Sep; 285(36):27632-40. PubMed ID: 20581396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphodiesterase 4 and phosphatase 2A differentially regulate cAMP/protein kinase a signaling for cardiac myocyte contraction under stimulation of beta1 adrenergic receptor.
    De Arcangelis V; Soto D; Xiang Y
    Mol Pharmacol; 2008 Nov; 74(5):1453-62. PubMed ID: 18703669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A-kinase anchoring protein targeting of protein kinase A in the heart.
    Ruehr ML; Russell MA; Bond M
    J Mol Cell Cardiol; 2004 Sep; 37(3):653-65. PubMed ID: 15350838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinct PKA and Epac compartmentalization in airway function and plasticity.
    Dekkers BG; Racké K; Schmidt M
    Pharmacol Ther; 2013 Feb; 137(2):248-65. PubMed ID: 23089371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytoplasmic cAMP concentrations in intact cardiac myocytes.
    Iancu RV; Ramamurthy G; Warrier S; Nikolaev VO; Lohse MJ; Jones SW; Harvey RD
    Am J Physiol Cell Physiol; 2008 Aug; 295(2):C414-22. PubMed ID: 18550706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MRP4 and CFTR in the regulation of cAMP and β-adrenergic contraction in cardiac myocytes.
    Sellers ZM; Naren AP; Xiang Y; Best PM
    Eur J Pharmacol; 2012 Apr; 681(1-3):80-7. PubMed ID: 22381067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Abnormal Mitochondrial cAMP/PKA Signaling Is Involved in Sepsis-Induced Mitochondrial and Myocardial Dysfunction.
    Neviere R; Delguste F; Durand A; Inamo J; Boulanger E; Preau S
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27973394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. beta2-adrenergic cAMP signaling is uncoupled from phosphorylation of cytoplasmic proteins in canine heart.
    Kuschel M; Zhou YY; Spurgeon HA; Bartel S; Karczewski P; Zhang SJ; Krause EG; Lakatta EG; Xiao RP
    Circulation; 1999 May; 99(18):2458-65. PubMed ID: 10318670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial and temporal aspects of cAMP signalling in cardiac myocytes.
    Iancu RV; Ramamurthy G; Harvey RD
    Clin Exp Pharmacol Physiol; 2008 Nov; 35(11):1343-8. PubMed ID: 18671712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway.
    Mongillo M; Tocchetti CG; Terrin A; Lissandron V; Cheung YF; Dostmann WR; Pozzan T; Kass DA; Paolocci N; Houslay MD; Zaccolo M
    Circ Res; 2006 Feb; 98(2):226-34. PubMed ID: 16357307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.