BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

509 related articles for article (PubMed ID: 16902767)

  • 1. GABA-immunoreactive neurons and terminals in the cat periaqueductal gray matter: a light and electron microscopic study.
    Barbaresi P
    J Neurocytol; 2005 Dec; 34(6):471-87. PubMed ID: 16902767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light microscopic and ultrastructural analysis of GABA-immunoreactive profiles in the monkey spinal cord.
    Carlton SM; Hayes ES
    J Comp Neurol; 1990 Oct; 300(2):162-82. PubMed ID: 2258461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The GABAergic neurons and axon terminals in the lateralis medialis-suprageniculate nuclear complex of the cat: GABA-immunocytochemical and WGA-HRP studies by light and electron microscopy.
    Norita M; Katoh Y
    J Comp Neurol; 1987 Sep; 263(1):54-67. PubMed ID: 3667971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Met5-enkephalin is localized within axon terminals in the subfornical organ: vascular contacts and interactions with neurons containing gamma-aminobutyric acid.
    Pickel VM; Chan J
    J Neurosci Res; 1994 Apr; 37(6):735-49. PubMed ID: 8046774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between substance P-immunoreactive central terminals and gamma-aminobutyric acid-immunoreactive elements in synaptic glomeruli in the lamina II of the chicken spinal cord.
    Sakamoto H; Atsumi S
    Neurosci Res; 1995 Nov; 23(4):335-43. PubMed ID: 8602272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphologically heterogeneous met-enkephalin terminals form synapses with tyrosine hydroxylase-containing dendrites in the rat nucleus locus coeruleus.
    Van Bockstaele EJ; Branchereau P; Pickel VM
    J Comp Neurol; 1995 Dec; 363(3):423-38. PubMed ID: 8847409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAergic neural elements in the rat basilar pons: electron microscopic immunochemistry.
    Border BG; Mihailoff GA
    J Comp Neurol; 1990 May; 295(1):123-35. PubMed ID: 2341630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic relations of GABAergic neurons in the area postrema.
    Guan JL; Wang QP; Ochiai H; Nakai Y
    Acta Anat (Basel); 1994; 150(3):198-204. PubMed ID: 7817717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructure of substance P immunoreactive elements in the periaqueductal gray matter of the rat.
    Gioia M; Bianchi R
    Anat Rec; 1990 Nov; 228(3):345-57. PubMed ID: 1701983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of glutamic-acid-decarboxylase-immunoreactive axon terminals in the inferior olive of the rat, with special emphasis on anatomical relations between GABAergic synapses and dendrodendritic gap junctions.
    Sotelo C; Gotow T; Wassef M
    J Comp Neurol; 1986 Oct; 252(1):32-50. PubMed ID: 3025270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: II. Electron microscopic immunocytochemical evidence of GABAergic control over the projection from the periaqueductal gray to the nucleus raphe magnus in the rat.
    Reichling DB; Basbaum AI
    J Comp Neurol; 1990 Dec; 302(2):378-93. PubMed ID: 2289976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enrichment of cholinergic synaptic terminals on GABAergic neurons and coexistence of immunoreactive GABA and choline acetyltransferase in the same synaptic terminals in the striate cortex of the cat.
    Beaulieu C; Somogyi P
    J Comp Neurol; 1991 Feb; 304(4):666-80. PubMed ID: 2013651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholinergic and GABAergic neurotransmission in the fascia dentata: electron microscopic immunocytochemical studies in rodents and primates.
    Frotscher M; Soriano E; Leranth C
    Epilepsy Res Suppl; 1992; 7():65-78. PubMed ID: 1334670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gamma-aminobutyric acid in the medial rat nucleus accumbens: ultrastructural localization in neurons receiving monosynaptic input from catecholaminergic afferents.
    Pickel VM; Towle AC; Joh TH; Chan J
    J Comp Neurol; 1988 Jun; 272(1):1-14. PubMed ID: 2898489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular substrates for interactions between neurons containing phenylethanolamine N-methyltransferase and GABA in the nuclei of the solitary tracts.
    Pickel VM; Chan J; Milner TA
    J Comp Neurol; 1989 Aug; 286(2):243-59. PubMed ID: 2794119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enkephalin in the caudal PAG of rat: an immunocytochemical electron microscopic study.
    Gioia M; Bianchi R
    J Hirnforsch; 1995; 36(3):421-31. PubMed ID: 7560914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible morphological substrates for GABA-mediated presynaptic inhibition in the lamprey spinal cord.
    Christenson J; Shupliakov O; Cullheim S; Grillner S
    J Comp Neurol; 1993 Feb; 328(4):463-72. PubMed ID: 8429129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural morphometric analysis of GABA-immunoreactive terminals in the ventrocaudal periaqueductal grey: analysis of the relationship of GABA terminals and the GABAA receptor to periaqueductal grey-raphe magnus projection neurons.
    Williams FG; Beitz AJ
    J Neurocytol; 1990 Oct; 19(5):686-96. PubMed ID: 1706415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABA-immunoreactive neurons and terminals in the lateral cervical nucleus of the cynomolgus monkey.
    Broman J; Blomqvist A
    J Comp Neurol; 1989 May; 283(3):415-24. PubMed ID: 2545746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABAergic circuitry in the rostral ventral medulla of the rat and its relationship to descending antinociceptive controls.
    Cho HJ; Basbaum AI
    J Comp Neurol; 1991 Jan; 303(2):316-28. PubMed ID: 2013643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.