BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16902982)

  • 1. Optimal acquisition schemes for in vivo quantitative magnetization transfer MRI.
    Cercignani M; Alexander DC
    Magn Reson Med; 2006 Oct; 56(4):803-10. PubMed ID: 16902982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of selective inversion recovery magnetization transfer imaging for macromolecular content mapping in the human brain.
    Dortch RD; Bagnato F; Gochberg DF; Gore JC; Smith SA
    Magn Reson Med; 2018 Nov; 80(5):1824-1835. PubMed ID: 29573356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative magnetization transfer by trains of radio frequency pulses in human brain: extension of a free evolution model to continuous-wave-like conditions.
    Helms G; Piringer A
    Magn Reson Imaging; 2005 Jul; 23(6):723-31. PubMed ID: 16198827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iterative optimization method for design of quantitative magnetization transfer imaging experiments.
    Levesque IR; Sled JG; Pike GB
    Magn Reson Med; 2011 Sep; 66(3):635-43. PubMed ID: 21748796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast high-resolution brain imaging with balanced SSFP: Interpretation of quantitative magnetization transfer towards simple MTR.
    Garcia M; Gloor M; Radue EW; Stippich Ch; Wetzel SG; Scheffler K; Bieri O
    Neuroimage; 2012 Jan; 59(1):202-11. PubMed ID: 21820061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous measurement of saturation and relaxation in human brain by repetitive magnetization transfer pulses.
    Helms G; Piringer A
    NMR Biomed; 2005 Feb; 18(1):44-50. PubMed ID: 15455467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple correction for B1 field errors in magnetization transfer ratio measurements.
    Samson RS; Wheeler-Kingshott CA; Symms MR; Tozer DJ; Tofts PS
    Magn Reson Imaging; 2006 Apr; 24(3):255-63. PubMed ID: 16563954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of pulsed saturation transfer at 1.5T and 3T.
    Chan RW; Myrehaug S; Stanisz GJ; Sahgal A; Lau AZ
    Magn Reson Med; 2019 Nov; 82(5):1684-1699. PubMed ID: 31228291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic variation of off-resonance prepulses for clinical magnetization transfer contrast imaging at 0.2, 1.5, and 3.0 tesla.
    Martirosian P; Boss A; Deimling M; Kiefer B; Schraml C; Schwenzer NF; Claussen CD; Schick F
    Invest Radiol; 2008 Jan; 43(1):16-26. PubMed ID: 18097273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of cerebrospinal fluid partial volume effects in quantitative magnetization transfer imaging using a three-pool model with nonexchanging water component.
    Mossahebi P; Alexander AL; Field AS; Samsonov AA
    Magn Reson Med; 2015 Nov; 74(5):1317-26. PubMed ID: 25394181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetization transfer from inhomogeneously broadened lines (ihMT): Experimental optimization of saturation parameters for human brain imaging at 1.5 Tesla.
    Girard OM; Prevost VH; Varma G; Cozzone PJ; Alsop DC; Duhamel G
    Magn Reson Med; 2015 Jun; 73(6):2111-21. PubMed ID: 24962257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional variations in normal brain shown by quantitative magnetization transfer imaging.
    Sled JG; Levesque I; Santos AC; Francis SJ; Narayanan S; Brass SD; Arnold DL; Pike GB
    Magn Reson Med; 2004 Feb; 51(2):299-303. PubMed ID: 14755655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brain.
    Yarnykh VL; Yuan C
    Neuroimage; 2004 Sep; 23(1):409-24. PubMed ID: 15325389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing brain tissue contrast with EPI: a simulated annealing approach.
    Ikonomidou VN; van Gelderen P; de Zwart JA; Fukunaga M; Duyn JH
    Magn Reson Med; 2005 Aug; 54(2):373-85. PubMed ID: 16032676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myelin mapping in the central nervous system of living mice using contrast-enhanced magnetization transfer MRI.
    Watanabe T; Frahm J; Michaelis T
    Neuroimage; 2012 Nov; 63(2):812-7. PubMed ID: 22796983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI.
    Helms G; Dathe H; Kallenberg K; Dechent P
    Magn Reson Med; 2008 Dec; 60(6):1396-407. PubMed ID: 19025906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized inversion recovery sequences for quantitative T1 and magnetization transfer imaging.
    Li K; Zu Z; Xu J; Janve VA; Gore JC; Does MD; Gochberg DF
    Magn Reson Med; 2010 Aug; 64(2):491-500. PubMed ID: 20665793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproducibility of quantitative magnetization-transfer imaging parameters from repeated measurements.
    Levesque IR; Sled JG; Narayanan S; Giacomini PS; Ribeiro LT; Arnold DL; Pike GB
    Magn Reson Med; 2010 Aug; 64(2):391-400. PubMed ID: 20665783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized balanced steady-state free precession magnetization transfer imaging.
    Bieri O; Scheffler K
    Magn Reson Med; 2007 Sep; 58(3):511-8. PubMed ID: 17763346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity regularization of the Cramér-Rao lower bound to minimize B
    Boudreau M; Pike GB
    Magn Reson Med; 2018 Dec; 80(6):2560-2572. PubMed ID: 29733460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.