These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 16902990)

  • 1. Intersegmental transfer of sensory signals in the stick insect leg muscle control system.
    Stein W; Büschges A; Bässler U
    J Neurobiol; 2006 Sep; 66(11):1253-69. PubMed ID: 16902990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg.
    von Uckermann G; Büschges A
    J Neurophysiol; 2009 Sep; 102(3):1956-75. PubMed ID: 19605613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensorimotor pathways involved in interjoint reflex action of an insect leg.
    Hess D; Büschges A
    J Neurobiol; 1997 Dec; 33(7):891-913. PubMed ID: 9407012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect.
    Büschges A
    J Neurobiol; 1995 Aug; 27(4):488-512. PubMed ID: 7561829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibration signals from the FT joint can induce phase transitions in both directions in motoneuron pools of the stick insect walking system.
    Bässler U; Sauer AE; Büschges A
    J Neurobiol; 2003 Aug; 56(2):125-38. PubMed ID: 12838578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint.
    Hess D; Büschges A
    J Neurophysiol; 1999 Apr; 81(4):1856-65. PubMed ID: 10200220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-dependent sensitivity of proprioceptive sensory neurons in the stick insect femoral chordotonal organ.
    DiCaprio RA; Wolf H; Büschges A
    J Neurophysiol; 2002 Nov; 88(5):2387-98. PubMed ID: 12424280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intersegmental coordination of walking movements in stick insects.
    Ludwar BCh; Göritz ML; Schmidt J
    J Neurophysiol; 2005 Mar; 93(3):1255-65. PubMed ID: 15525808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of membrane potential in mesothoracic moto- and interneurons during stick insect front-leg walking.
    Ludwar BCh; Westmark S; Büschges A; Schmidt J
    J Neurophysiol; 2005 Oct; 94(4):2772-84. PubMed ID: 16000520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distributed processing of load and movement feedback in the premotor network controlling an insect leg joint.
    Gebehart C; Schmidt J; Büschges A
    J Neurophysiol; 2021 May; 125(5):1800-1813. PubMed ID: 33788591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects.
    Akay T; Büschges A
    J Neurophysiol; 2006 Dec; 96(6):3532-7. PubMed ID: 16956989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remodeling of the femoral chordotonal organ during metamorphosis of the hawkmoth, Manduca sexta.
    Consoulas C; Rose U; Levine RB
    J Comp Neurol; 2000 Oct; 426(3):391-405. PubMed ID: 10992245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust.
    Büschges A; Wolf H
    J Neurophysiol; 1995 May; 73(5):1843-60. PubMed ID: 7623085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal differences between load and movement signal integration in the sensorimotor network of an insect leg.
    Gebehart C; Büschges A
    J Neurophysiol; 2021 Dec; 126(6):1875-1890. PubMed ID: 34705575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular recordings from nonspiking interneurons in a semiintact, tethered walking insect.
    Schmitz J; Büschges A; Kittmann R
    J Neurobiol; 1991 Dec; 22(9):907-21. PubMed ID: 1724457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Octopamine effects mimick state-dependent changes in a proprioceptive feedback system.
    Büschges A; Kittmann R; Ramirez JM
    J Neurobiol; 1993 May; 24(5):598-610. PubMed ID: 8326300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distributed processing on the basis of parallel and antagonistic pathways simulation of the femur-tibia control system in the stick insect.
    Sauer AE; Driesang RB; Büschges A; Bässler U
    J Comput Neurosci; 1996 Sep; 3(3):179-98. PubMed ID: 8872700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint.
    Akay T; Bässler U; Gerharz P; Büschges A
    J Neurophysiol; 2001 Feb; 85(2):594-604. PubMed ID: 11160496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory component of the resistance reflex in the locomotor network of the crayfish.
    Le Bon-Jego M; Cattaert D
    J Neurophysiol; 2002 Nov; 88(5):2575-88. PubMed ID: 12424295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
    Akay T; Haehn S; Schmitz J; Büschges A
    J Neurophysiol; 2004 Jul; 92(1):42-51. PubMed ID: 14999042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.