These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16903067)

  • 21. Emerging Network-Based Tools in Movement Ecology.
    Jacoby DMP; Freeman R
    Trends Ecol Evol; 2016 Apr; 31(4):301-314. PubMed ID: 26879670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Minimizing errors in identifying Lévy flight behaviour of organisms.
    Sims DW; Righton D; Pitchford JW
    J Anim Ecol; 2007 Mar; 76(2):222-9. PubMed ID: 17302829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sampling animal movement paths causes turn autocorrelation.
    Nams VO
    Acta Biotheor; 2013 Jun; 61(2):269-84. PubMed ID: 23463145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic approach to space and habitat use based on biased random bridges.
    Benhamou S
    PLoS One; 2011 Jan; 6(1):e14592. PubMed ID: 21297869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robustness of movement models: can models bridge the gap between temporal scales of data sets and behavioural processes?
    Schlägel UE; Lewis MA
    J Math Biol; 2016 Dec; 73(6-7):1691-1726. PubMed ID: 27098937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selecting the best home range model: an information-theoretic approach.
    Horne JS; Garton EO
    Ecology; 2006 May; 87(5):1146-52. PubMed ID: 16761593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Moving on with foraging theory: incorporating movement decisions into the functional response of a gregarious shorebird.
    van Gils JA; van der Geest M; De Meulenaer B; Gillis H; Piersma T; Folmer EO
    J Anim Ecol; 2015 Mar; 84(2):554-64. PubMed ID: 25283546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A general framework for the analysis of animal resource selection from telemetry data.
    Johnson DS; Thomas DL; Ver Hoef JM; Christ A
    Biometrics; 2008 Sep; 64(3):968-976. PubMed ID: 18047525
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generalizing the first-difference correlated random walk for marine animal movement data.
    Albertsen CM
    Sci Rep; 2019 Mar; 9(1):4017. PubMed ID: 30850659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Animal movements in heterogeneous landscapes: identifying profitable places and homogeneous movement bouts.
    Barraquand F; Benhamou S
    Ecology; 2008 Dec; 89(12):3336-48. PubMed ID: 19137941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving accuracy and precision in estimating fractal dimension of animal movement paths.
    Nams VO
    Acta Biotheor; 2006; 54(1):1-11. PubMed ID: 16823606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Animal movement in dynamic landscapes: interaction between behavioural strategies and resource distributions.
    Roshier DA; Doerr VA; Doerr ED
    Oecologia; 2008 May; 156(2):465-77. PubMed ID: 18317815
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bridging the gulf between correlated random walks and Lévy walks: autocorrelation as a source of Lévy walk movement patterns.
    Reynolds AM
    J R Soc Interface; 2010 Dec; 7(53):1753-8. PubMed ID: 20630882
    [TBL] [Abstract][Full Text] [Related]  

  • 34. State-space models of individual animal movement.
    Patterson TA; Thomas L; Wilcox C; Ovaskainen O; Matthiopoulos J
    Trends Ecol Evol; 2008 Feb; 23(2):87-94. PubMed ID: 18191283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Classification of Animal Movement Behavior through Residence in Space and Time.
    Torres LG; Orben RA; Tolkova I; Thompson DR
    PLoS One; 2017; 12(1):e0168513. PubMed ID: 28045906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extending the Functionality of Behavioural Change-Point Analysis with k-Means Clustering: A Case Study with the Little Penguin (Eudyptula minor).
    Zhang J; O'Reilly KM; Perry GL; Taylor GA; Dennis TE
    PLoS One; 2015; 10(4):e0122811. PubMed ID: 25922935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying stationary phases in multivariate time series for highlighting behavioural modes and home range settlements.
    Patin R; Etienne MP; Lebarbier E; Chamaillé-Jammes S; Benhamou S
    J Anim Ecol; 2020 Jan; 89(1):44-56. PubMed ID: 31539165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Apparent power-law distributions in animal movements can arise from intraspecific interactions.
    Breed GA; Severns PM; Edwards AM
    J R Soc Interface; 2015 Feb; 12(103):. PubMed ID: 25519992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Movements of marine fish and decapod crustaceans: process, theory and application.
    Pittman SJ; McAlpine CA
    Adv Mar Biol; 2003; 44():205-94. PubMed ID: 12846043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Velocity and curvature in human locomotion along complex curved paths: a comparison with hand movements.
    Hicheur H; Vieilledent S; Richardson MJ; Flash T; Berthoz A
    Exp Brain Res; 2005 Apr; 162(2):145-54. PubMed ID: 15586276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.