These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
453 related articles for article (PubMed ID: 16903355)
1. Overexpression of BetS, a Sinorhizobium meliloti high-affinity betaine transporter, in bacteroids from Medicago sativa nodules sustains nitrogen fixation during early salt stress adaptation. Boscari A; Van de Sype G; Le Rudulier D; Mandon K Mol Plant Microbe Interact; 2006 Aug; 19(8):896-903. PubMed ID: 16903355 [TBL] [Abstract][Full Text] [Related]
2. The Sinorhizobium meliloti glycine betaine biosynthetic genes (betlCBA) are induced by choline and highly expressed in bacteroids. Mandon K; Osterås M; Boncompagni E; Trinchant JC; Spennato G; Poggi MC; Le Rudulier D Mol Plant Microbe Interact; 2003 Aug; 16(8):709-19. PubMed ID: 12906115 [TBL] [Abstract][Full Text] [Related]
3. BetS is a major glycine betaine/proline betaine transporter required for early osmotic adjustment in Sinorhizobium meliloti. Boscari A; Mandon K; Dupont L; Poggi MC; Le Rudulier D J Bacteriol; 2002 May; 184(10):2654-63. PubMed ID: 11976294 [TBL] [Abstract][Full Text] [Related]
4. Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Barsch A; Tellström V; Patschkowski T; Küster H; Niehaus K Mol Plant Microbe Interact; 2006 Sep; 19(9):998-1013. PubMed ID: 16941904 [TBL] [Abstract][Full Text] [Related]
5. The Sinorhizobium meliloti ABC transporter Cho is highly specific for choline and expressed in bacteroids from Medicago sativa nodules. Dupont L; Garcia I; Poggi MC; Alloing G; Mandon K; Le Rudulier D J Bacteriol; 2004 Sep; 186(18):5988-96. PubMed ID: 15342567 [TBL] [Abstract][Full Text] [Related]
6. Stable symbiotic nitrogen fixation under water-deficit field conditions by a stress-tolerant alfalfa microsymbiont and its complete genome sequence. Jozefkowicz C; Brambilla S; Frare R; Stritzler M; Piccinetti C; Puente M; Berini CA; Pérez PR; Soto G; Ayub N J Biotechnol; 2017 Dec; 263():52-54. PubMed ID: 29050878 [TBL] [Abstract][Full Text] [Related]
7. Functional expression of Sinorhizobium meliloti BetS, a high-affinity betaine transporter, in Bradyrhizobium japonicum USDA110. Boscari A; Mandon K; Poggi MC; Le Rudulier D Appl Environ Microbiol; 2004 Oct; 70(10):5916-22. PubMed ID: 15466533 [TBL] [Abstract][Full Text] [Related]
8. Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti. Maclean AM; White CE; Fowler JE; Finan TM Mol Plant Microbe Interact; 2009 Sep; 22(9):1116-27. PubMed ID: 19656046 [TBL] [Abstract][Full Text] [Related]
9. Uptake of glycine betaine and its analogues by bacteroids of Rhizobium meliloti. Fougère F; Le Rudulier D J Gen Microbiol; 1990 Jan; 136(1):157-63. PubMed ID: 2351954 [TBL] [Abstract][Full Text] [Related]
10. Probing the Sinorhizobium meliloti-alfalfa symbiosis using temperature-sensitive and impaired-function citrate synthase mutants. Grzemski W; Akowski JP; Kahn ML Mol Plant Microbe Interact; 2005 Feb; 18(2):134-41. PubMed ID: 15720082 [TBL] [Abstract][Full Text] [Related]
11. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. Bianco C; Defez R J Exp Bot; 2009; 60(11):3097-107. PubMed ID: 19436044 [TBL] [Abstract][Full Text] [Related]
14. Isolation and symbiotic characterization of aromatic amino acid auxotrophs of Sinorhizobium meliloti. Prasad CK; Vineetha KE; Hassani R; Gupta R; Randhawa GS Indian J Exp Biol; 2000 Oct; 38(10):1041-9. PubMed ID: 11324158 [TBL] [Abstract][Full Text] [Related]
15. Proline betaine uptake in Sinorhizobium meliloti: Characterization of Prb, an opp-like ABC transporter regulated by both proline betaine and salinity stress. Alloing G; Travers I; Sagot B; Le Rudulier D; Dupont L J Bacteriol; 2006 Sep; 188(17):6308-17. PubMed ID: 16923898 [TBL] [Abstract][Full Text] [Related]
16. Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection. Capela D; Filipe C; Bobik C; Batut J; Bruand C Mol Plant Microbe Interact; 2006 Apr; 19(4):363-72. PubMed ID: 16610739 [TBL] [Abstract][Full Text] [Related]
17. Alfalfa nodules elicited by a flavodoxin-overexpressing Ensifer meliloti strain display nitrogen-fixing activity with enhanced tolerance to salinity stress. Redondo FJ; Coba de la Peña T; Lucas MM; Pueyo JJ Planta; 2012 Dec; 236(6):1687-700. PubMed ID: 22864594 [TBL] [Abstract][Full Text] [Related]
18. [The effect of combined and separate inoculation of alfalfa plants with Azospirillum lipoferum and Sinorhizobium meliloti on denitrification and nitrogen-fixing activities]. Furina EK; Bonartseva GA Prikl Biokhim Mikrobiol; 2007; 43(3):318-24. PubMed ID: 17619579 [TBL] [Abstract][Full Text] [Related]
19. Isolation and symbiotic characterization of transposon Tn5-induced arginine auxotrophs of Sinorhizobium meliloti. Kumar A; Vij N; Randhawa GS Indian J Exp Biol; 2003 Oct; 41(10):1198-204. PubMed ID: 15242285 [TBL] [Abstract][Full Text] [Related]
20. [A Sinorhizoboium meliloti strain that can nodulate soybean plants]. Lin RS; Du BH; Li XH; Wang L; Yang SS Wei Sheng Wu Xue Bao; 2004 Dec; 44(6):729-32. PubMed ID: 16110948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]