These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
594 related articles for article (PubMed ID: 16903362)
1. An efficient dynamic system for real-time robot-path planning. Willms AR; Yang SX IEEE Trans Syst Man Cybern B Cybern; 2006 Aug; 36(4):755-66. PubMed ID: 16903362 [TBL] [Abstract][Full Text] [Related]
2. Real-time robot path planning via a distance-propagating dynamic system with obstacle clearance. Willms AR; Yang SX IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):884-93. PubMed ID: 18558550 [TBL] [Abstract][Full Text] [Related]
3. Real-time robot path planning based on a modified pulse-coupled neural network model. Qu H; Yang SX; Willms AR; Yi Z IEEE Trans Neural Netw; 2009 Nov; 20(11):1724-39. PubMed ID: 19775961 [TBL] [Abstract][Full Text] [Related]
4. Grid-Based Mobile Robot Path Planning Using Aging-Based Ant Colony Optimization Algorithm in Static and Dynamic Environments. Ajeil FH; Ibraheem IK; Azar AT; Humaidi AJ Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32231091 [TBL] [Abstract][Full Text] [Related]
5. Navigating a mobile robot by a traversability field histogram. Ye C IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):361-72. PubMed ID: 17416164 [TBL] [Abstract][Full Text] [Related]
6. Hierarchical incremental path planning and situation-dependent optimized dynamic motion planning considering accelerations. Lai XC; Ge SS; Al Mamun A IEEE Trans Syst Man Cybern B Cybern; 2007 Dec; 37(6):1541-54. PubMed ID: 18179072 [TBL] [Abstract][Full Text] [Related]
7. On robotic optimal path planning in polygonal regions with pseudo-Euclidean metrics. Sun Z; Reif JH IEEE Trans Syst Man Cybern B Cybern; 2007 Aug; 37(4):925-36. PubMed ID: 17702290 [TBL] [Abstract][Full Text] [Related]
8. Real-time multiple human perception with color-depth cameras on a mobile robot. Zhang H; Reardon C; Parker LE IEEE Trans Cybern; 2013 Oct; 43(5):1429-41. PubMed ID: 23974672 [TBL] [Abstract][Full Text] [Related]
9. Contact-state classification in human-demonstrated robot compliant motion tasks using the boosting algorithm. Cabras S; Castellanos ME; Staffetti E IEEE Trans Syst Man Cybern B Cybern; 2010 Oct; 40(5):1372-86. PubMed ID: 20106744 [TBL] [Abstract][Full Text] [Related]
10. Life-long optimization of the symbolic model of indoor environments for a mobile robot. Galindo C; Fernández-Madrigal JA; González J; Saffiotti A; Buschka P IEEE Trans Syst Man Cybern B Cybern; 2007 Oct; 37(5):1290-304. PubMed ID: 17926710 [TBL] [Abstract][Full Text] [Related]
11. Mobile Robot Path Planning Using Ant Colony Algorithm and Improved Potential Field Method. Chen G; Liu J Comput Intell Neurosci; 2019; 2019():1932812. PubMed ID: 31198416 [TBL] [Abstract][Full Text] [Related]
12. Mobile robot path planning with reformative bat algorithm. Xin G; Shi L; Long G; Pan W; Li Y; Xu J PLoS One; 2022; 17(11):e0276577. PubMed ID: 36331930 [TBL] [Abstract][Full Text] [Related]
13. Multi-objective four-dimensional vehicle motion planning in large dynamic environments. Wu PP; Campbell D; Merz T IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):621-34. PubMed ID: 20851795 [TBL] [Abstract][Full Text] [Related]
14. LF-ACO: an effective formation path planning for multi-mobile robot. Yang L; Fu L; Li P; Mao J; Guo N; Du L Math Biosci Eng; 2022 Jan; 19(1):225-252. PubMed ID: 34902989 [TBL] [Abstract][Full Text] [Related]
15. Model-free execution monitoring in behavior-based robotics. Pettersson O; Karlsson L; Saffiotti A IEEE Trans Syst Man Cybern B Cybern; 2007 Aug; 37(4):890-901. PubMed ID: 17702287 [TBL] [Abstract][Full Text] [Related]
16. Boundary following and globally convergent path planning using instant goals. Ge SS; Lai X; Al Mamun A IEEE Trans Syst Man Cybern B Cybern; 2005 Apr; 35(2):240-54. PubMed ID: 15828653 [TBL] [Abstract][Full Text] [Related]
17. Line of sight robot navigation toward a moving goal. Belkhouche F; Belkhouche B; Rastgoufard P IEEE Trans Syst Man Cybern B Cybern; 2006 Apr; 36(2):255-67. PubMed ID: 16602589 [TBL] [Abstract][Full Text] [Related]
18. A neural network approach to dynamic task assignment of multirobots. Zhu A; Yang SX IEEE Trans Neural Netw; 2006 Sep; 17(5):1278-87. PubMed ID: 17001987 [TBL] [Abstract][Full Text] [Related]
19. Fuzzy integral-based gaze control architecture incorporated with modified-univector field-based navigation for humanoid robots. Yoo JK; Kim JH IEEE Trans Syst Man Cybern B Cybern; 2012 Feb; 42(1):125-39. PubMed ID: 21878418 [TBL] [Abstract][Full Text] [Related]
20. Applications of artificial intelligence in safe human-robot interactions. Najmaei N; Kermani MR IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):448-59. PubMed ID: 20699212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]