These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
397 related articles for article (PubMed ID: 1690347)
1. Functional acetylcholine receptors expressed in Xenopus oocytes after injection of Torpedo beta, gamma, and delta subunit RNAs are a consequence of endogenous oocyte gene expression. Buller AL; White MM Mol Pharmacol; 1990 Mar; 37(3):423-8. PubMed ID: 1690347 [TBL] [Abstract][Full Text] [Related]
2. Structure of the gamma-less nicotinic acetylcholine receptor: learning from omission. Charnet P; Labarca C; Lester HA Mol Pharmacol; 1992 Apr; 41(4):708-17. PubMed ID: 1373800 [TBL] [Abstract][Full Text] [Related]
3. Tryptophan 86 of the alpha subunit in the Torpedo nicotinic acetylcholine receptor is important for channel activation by the bisquaternary ligand suberyldicholine. Kapur A; Davies M; Dryden WF; Dunn SM Biochemistry; 2006 Aug; 45(34):10337-43. PubMed ID: 16922509 [TBL] [Abstract][Full Text] [Related]
4. Activation of the Torpedo nicotinic acetylcholine receptor. The contribution of residues alphaArg55 and gammaGlu93. Kapur A; Davies M; Dryden WF; Dunn SM FEBS J; 2006 Mar; 273(5):960-70. PubMed ID: 16478470 [TBL] [Abstract][Full Text] [Related]
5. Four pharmacologically distinct subtypes of alpha4beta2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Zwart R; Vijverberg HP Mol Pharmacol; 1998 Dec; 54(6):1124-31. PubMed ID: 9855643 [TBL] [Abstract][Full Text] [Related]
6. Structure of the agonist-binding sites of the Torpedo nicotinic acetylcholine receptor: affinity-labeling and mutational analyses identify gamma Tyr-111/delta Arg-113 as antagonist affinity determinants. Chiara DC; Xie Y; Cohen JB Biochemistry; 1999 May; 38(20):6689-98. PubMed ID: 10350488 [TBL] [Abstract][Full Text] [Related]
7. Location of a delta-subunit region determining ion transport through the acetylcholine receptor channel. Imoto K; Methfessel C; Sakmann B; Mishina M; Mori Y; Konno T; Fukuda K; Kurasaki M; Bujo H; Fujita Y Nature; 1986 Dec 18-31; 324(6098):670-4. PubMed ID: 2432430 [TBL] [Abstract][Full Text] [Related]
8. Tryptophan substitutions reveal the role of nicotinic acetylcholine receptor alpha-TM3 domain in channel gating: differences between Torpedo and muscle-type AChR. Navedo M; Nieves M; Rojas L; Lasalde-Dominicci JA Biochemistry; 2004 Jan; 43(1):78-84. PubMed ID: 14705933 [TBL] [Abstract][Full Text] [Related]
9. Control of Torpedo acetylcholine receptor biosynthesis in Xenopus oocytes. Buller AL; White MM Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8717-21. PubMed ID: 3186754 [TBL] [Abstract][Full Text] [Related]
10. Tryptophan scanning mutagenesis in the TM3 domain of the Torpedo californica acetylcholine receptor beta subunit reveals an alpha-helical structure. Santiago J; Guzmán GR; Torruellas K; Rojas LV; Lasalde-Dominicci JA Biochemistry; 2004 Aug; 43(31):10064-70. PubMed ID: 15287734 [TBL] [Abstract][Full Text] [Related]
11. A physiological study on acetylcholine receptor expressed in Xenopus oocytes from cloned cDNAs. Takahashi T; Kuno M; Mishina M; Numa S J Physiol (Paris); 1985; 80(4):229-32. PubMed ID: 3834076 [TBL] [Abstract][Full Text] [Related]
12. Altered patterns of N-linked glycosylation of the Torpedo acetylcholine receptor expressed in Xenopus oocytes. Buller AL; White MM J Membr Biol; 1990 May; 115(2):179-89. PubMed ID: 2355395 [TBL] [Abstract][Full Text] [Related]
13. Single-channel properties of mouse-Torpedo acetylcholine receptor hybrids expressed in Xenopus oocytes. Yu L; Leonard RJ; Davidson N; Lester HA Brain Res Mol Brain Res; 1991 Jun; 10(3):203-11. PubMed ID: 1715966 [TBL] [Abstract][Full Text] [Related]
14. Assembly of mutant subunits of the nicotinic acetylcholine receptor lacking the conserved disulfide loop structure. Sumikawa K; Gehle VM J Biol Chem; 1992 Mar; 267(9):6286-90. PubMed ID: 1556136 [TBL] [Abstract][Full Text] [Related]
15. Expression of mouse-Torpedo acetylcholine receptor subunit chimeras and hybrids in Xenopus oocytes. Mayne KM; Yoshii K; Yu L; Lester HA; Davidson N Brain Res; 1987 Sep; 388(3):191-7. PubMed ID: 3676709 [TBL] [Abstract][Full Text] [Related]
16. The acetylcholinesterase inhibitor BW284c51 is a potent blocker of Torpedo nicotinic AchRs incorporated into the Xenopus oocyte membrane. Olivera-Bravo S; Ivorra I; Morales A Br J Pharmacol; 2005 Jan; 144(1):88-97. PubMed ID: 15644872 [TBL] [Abstract][Full Text] [Related]
17. Expression and assembly of Torpedo californica (Na,K)ATPase alpha-subunit truncated at N-terminal end in Xenopus oocytes. Mutoh Y; Noguchi S; Ohta T; Higashi K; Takasugi M; Kuroiwa A; Kawamura M Biochem Int; 1992 Apr; 26(5):775-85. PubMed ID: 1319153 [TBL] [Abstract][Full Text] [Related]
18. Mouse-Torpedo hybrid acetylcholine receptors: functional homology does not equal sequence homology. White MM; Mayne KM; Lester HA; Davidson N Proc Natl Acad Sci U S A; 1985 Jul; 82(14):4852-6. PubMed ID: 3860826 [TBL] [Abstract][Full Text] [Related]
19. Alpha3, beta2, and beta4 form heterotrimeric neuronal nicotinic acetylcholine receptors in Xenopus oocytes. Colquhoun LM; Patrick JW J Neurochem; 1997 Dec; 69(6):2355-62. PubMed ID: 9375666 [TBL] [Abstract][Full Text] [Related]