These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16903759)

  • 1. Which nido:nido-macropolyhedral boranes are most stable?
    Kiani FA; Hofmann M
    Inorg Chem; 2006 Aug; 45(17):6996-7003. PubMed ID: 16903759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural relationships among two vertex sharing macropolyhedral boranes.
    Kiani FA; Hofmann M
    Dalton Trans; 2007 Mar; (12):1207-13. PubMed ID: 17353952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cluster increments for macropolyhedral boranes.
    Kiani FA; Hofmann M
    Dalton Trans; 2006 Dec; (46):5515-20. PubMed ID: 17117221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative stability of closo-closo, closo-nido, and nido-nido macropolyhedral boranes: the role of orbital compatibility.
    Shameema O; Jemmis ED
    Chem Asian J; 2009 Aug; 4(8):1346-53. PubMed ID: 19557784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural increment system for 11-vertex nido-boranes and carboranes.
    Kiani FA; Hofmann M
    Inorg Chem; 2004 Dec; 43(26):8561-71. PubMed ID: 15606207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural paradigms in macropolyhedral boranes.
    Kiani FA; Hofmann M
    Chemistry; 2008; 14(9):2886-93. PubMed ID: 18232041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural increments for 11-vertex nido-phospha- and aza(carba)boranes and -borates; dependence of energy penalties on the extent of Electron Localization.
    Kiani FA; Hofmann M
    Inorg Chem; 2005 May; 44(10):3746-54. PubMed ID: 15877459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relative stabilities of 11-vertex nido- and 12-vertex closo-heteroboranes and -borates: facile estimation by structural or connection increments.
    Kiani FA; Hofmann M
    Dalton Trans; 2006 Feb; (5):686-92. PubMed ID: 16429172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macropolyhedral boron-containing cluster chemistry. Cluster opening and B-frame rearrangement in the reaction of B(16)H(20) with [{(IrCl(2)(eta(5)-C(5)Me(5))}(2)]. Synchrotron X-ray structures of [(eta(5)-C(5)Me(5))(2)Ir(2)B(16)H(17)Cl] and [(eta(5)-C(5)Me(5))(2)Ir(2)B(16)H(15)Cl].
    Carr MJ; Perera SD; Jelínek T; Kilner CA; Clegg W; Stíbr B; Kennedy JD
    Dalton Trans; 2006 Nov; (44):5221-4. PubMed ID: 17088960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macropolyhedral boron-containing cluster chemistry. The reversible disassembly and reassembly of the hexagonal pyramidal {B7} feature in the [S2B18H19]- anion.
    Ormsby DL; Greatrex R; Kennedy JD
    Dalton Trans; 2008 Mar; (12):1625-34. PubMed ID: 18335146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unifying electron-counting rule for macropolyhedral boranes, metallaboranes, and metallocenes.
    Jemmis ED; Balakrishnarajan MM; Pancharatna PD
    J Am Chem Soc; 2001 May; 123(18):4313-23. PubMed ID: 11457198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macropolyhedral boron-containing cluster chemistry. The unique nido-five-vertex--nido-ten-vertex conjuncto structure of [(eta5-C5Me5)2Rh2B11H15] via an unexpected cluster-dismantling.
    Carr MJ; Perera SD; Jelínek T; Stíbr B; Clegg W; Kilner CA; Kennedy JD
    Chem Commun (Camb); 2007 Sep; (34):3559-61. PubMed ID: 18080544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macropolyhedral boron-containing cluster chemistry. A synthetic approach via the auto-fusion of [6,9-(SMe2)2-arachno-B10H12].
    Bould J; Dörfler U; Rath NP; Barton L; Kilner CA; Londesborough MG; Ormsby DL; Kennedy JD
    Dalton Trans; 2006 Aug; (31):3752-65. PubMed ID: 16883401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functional study of 8- and 11-vertex polyhedral borane structures: comparison with bare germanium clusters.
    King RB; Silaghi-Dumitrescu I; Lupan A
    Inorg Chem; 2005 Oct; 44(22):7819-24. PubMed ID: 16241131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclopentadienyl ruthenium, rhodium, and iridium vertices in metallaboranes: geometry and chemical bonding.
    King RB
    Inorg Chem; 2004 Jul; 43(14):4241-7. PubMed ID: 15236536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Studies of Nido-8-Vertex Boranes, Carboranes, Heteroboranes, and the Lewis Base Adduct nido-B(8)H(10)L.
    Tebben AJ; Ji G; Williams RE; Bausch JW
    Inorg Chem; 1998 May; 37(9):2189-2197. PubMed ID: 11670374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defective vertices in arachno borane networks.
    King RB
    Inorg Chem; 2003 Jun; 42(11):3412-5. PubMed ID: 12767175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periodic trends and easy estimation of relative stabilities in 11-vertex nido-p-block-heteroboranes and -borates.
    Kiani FA; Hofmann M
    J Mol Model; 2006 Jul; 12(5):597-609. PubMed ID: 16261297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macropolyhedral boron-containing cluster chemistry. Cluster assembly about a molybdenum centre. Formation of the 19-vertex [(CO)2MoB16H15C2Ph2]- anion.
    Carr MJ; Franken A; Kennedy JD
    Dalton Trans; 2004 Sep; (17):2612-3. PubMed ID: 15514741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of pKa values of nido-carboranes by density functional theory methods.
    Farràs P; Teixidor F; Branchadell V
    Inorg Chem; 2006 Sep; 45(19):7947-54. PubMed ID: 16961389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.