BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16904106)

  • 1. Microtubule disruption, not calpain-dependent loss of MAP2, contributes to enduring NMDA-induced dendritic dysfunction in acute hippocampal slices.
    Hoskison MM; Shuttleworth CW
    Exp Neurol; 2006 Dec; 202(2):302-12. PubMed ID: 16904106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-dependent NMDA-induced dendritic injury and MAP2 loss in acute hippocampal slices.
    Hoskison MM; Yanagawa Y; Obata K; Shuttleworth CW
    Neuroscience; 2007 Mar; 145(1):66-79. PubMed ID: 17239543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtubule-associated protein 2 (MAP2) associates with the NMDA receptor and is spatially redistributed within rat hippocampal neurons after oxygen-glucose deprivation.
    Buddle M; Eberhardt E; Ciminello LH; Levin T; Wing R; DiPasquale K; Raley-Susman KM
    Brain Res; 2003 Jul; 978(1-2):38-50. PubMed ID: 12834896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calpain activation contributes to dendritic remodeling after brief excitotoxic injury in vitro.
    Faddis BT; Hasbani MJ; Goldberg MP
    J Neurosci; 1997 Feb; 17(3):951-9. PubMed ID: 8994050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of PSD-95 and cypin in morphological changes in dendrites following sublethal NMDA exposure.
    Tseng CY; Firestein BL
    J Neurosci; 2011 Oct; 31(43):15468-80. PubMed ID: 22031893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal dependence of cysteine protease activation following excitotoxic hippocampal injury.
    Berry JN; Sharrett-Field LJ; Butler TR; Prendergast MA
    Neuroscience; 2012 Oct; 222():147-58. PubMed ID: 22842515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices.
    Pozzo-Miller LD; Inoue T; Murphy DD
    J Neurophysiol; 1999 Mar; 81(3):1404-11. PubMed ID: 10085365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and reversible changes in dendrite morphology and synaptic efficacy following NMDA receptor activation: implication for a cellular defense against excitotoxicity.
    Ikegaya Y; Kim JA; Baba M; Iwatsubo T; Nishiyama N; Matsuki N
    J Cell Sci; 2001 Nov; 114(Pt 22):4083-93. PubMed ID: 11739640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMDA-glutamate receptors regulate phosphorylation of dendritic cytoskeletal proteins in the hippocampus.
    Sánchez C; Ulloa L; Montoro RJ; López-Barneo J; Avila J
    Brain Res; 1997 Aug; 765(1):141-8. PubMed ID: 9310405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-dependent cleavage of the K-Cl cotransporter KCC2 mediated by calcium-activated protease calpain.
    Puskarjov M; Ahmad F; Kaila K; Blaesse P
    J Neurosci; 2012 Aug; 32(33):11356-64. PubMed ID: 22895718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of NMDA receptor-mediated activity in dendrites of hippocampal CA1 pyramidal neurons.
    Pongrácz F; Poolos NP; Kocsis JD; Shepherd GM
    J Neurophysiol; 1992 Dec; 68(6):2248-59. PubMed ID: 1337105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MAP2 phosphorylation and visual plasticity in Xenopus.
    Guo Y; Sánchez C; Udin SB
    Brain Res; 2001 Jun; 905(1-2):134-41. PubMed ID: 11423088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+-dependent, stimulus-specific modulation of the plasma membrane Ca2+ pump in hippocampal neurons.
    Ferragamo MJ; Reinardy JL; Thayer SA
    J Neurophysiol; 2009 May; 101(5):2563-71. PubMed ID: 19244356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular Zn2+ increases contribute to the progression of excitotoxic Ca2+ increases in apical dendrites of CA1 pyramidal neurons.
    Vander Jagt TA; Connor JA; Weiss JH; Shuttleworth CW
    Neuroscience; 2009 Mar; 159(1):104-14. PubMed ID: 19135505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of activity-dependent, bidirectional control of microtubule-associated protein MAP2 phosphorylation during postnatal development.
    Quinlan EM; Halpain S
    J Neurosci; 1996 Dec; 16(23):7627-37. PubMed ID: 8922419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditional disruption of calpain in the CNS alters dendrite morphology, impairs LTP, and promotes neuronal survival following injury.
    Amini M; Ma CL; Farazifard R; Zhu G; Zhang Y; Vanderluit J; Zoltewicz JS; Hage F; Savitt JM; Lagace DC; Slack RS; Beique JC; Baudry M; Greer PA; Bergeron R; Park DS
    J Neurosci; 2013 Mar; 33(13):5773-84. PubMed ID: 23536090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-tolerance to otherwise lethal N-methyl-D-aspartate and oxygen-glucose deprivation in preconditioned cortical cultures.
    Tauskela JS; Comas T; Hewitt K; Monette R; Paris J; Hogan M; Morley P
    Neuroscience; 2001; 107(4):571-84. PubMed ID: 11720781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Na(+)/Ca(2+) exchange to excessive Ca(2+) loading in dendrites and somata of CA1 neurons in acute slice.
    Dietz RM; Kiedrowski L; Shuttleworth CW
    Hippocampus; 2007; 17(11):1049-59. PubMed ID: 17598158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMDA receptor-mediated regulation of AMPA receptor properties in organotypic hippocampal slice cultures.
    Gellerman DM; Bi X; Baudry M
    J Neurochem; 1997 Jul; 69(1):131-6. PubMed ID: 9202303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging NMDA- and kainate-induced intrinsic optical signals from the hippocampal slice.
    Andrew RD; Adams JR; Polischuk TM
    J Neurophysiol; 1996 Oct; 76(4):2707-17. PubMed ID: 8899640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.