BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16904158)

  • 21. Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids.
    Alvarez MT; Crespo C; Mattiasson B
    Chemosphere; 2007 Jan; 66(9):1677-83. PubMed ID: 16979215
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of the sulfide (S2-) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor.
    Veeken AH; Akoto L; Hulshoff Pol LW; Weijma J
    Water Res; 2003 Sep; 37(15):3709-17. PubMed ID: 12867339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process.
    Chen SS; Cheng CY; Li CW; Chai PH; Chang YM
    J Hazard Mater; 2007 Apr; 142(1-2):362-7. PubMed ID: 16987595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands.
    Stein OR; Borden-Stewart DJ; Hook PB; Jones WL
    Water Res; 2007 Aug; 41(15):3440-8. PubMed ID: 17599383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor.
    Sampaio RM; Timmers RA; Xu Y; Keesman KJ; Lens PN
    J Hazard Mater; 2009 Jun; 165(1-3):256-65. PubMed ID: 19019537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of COD/SO(4)(2-) ratio and sulfide on thermophilic (55 degrees C) sulfate reduction during the acidification of sucrose at pH 6.
    Lopes SI; Wang X; Capela MI; Lens PN
    Water Res; 2007 Jun; 41(11):2379-92. PubMed ID: 17434203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lead removal through biological sulfate reduction process.
    Hien Hoa TT; Liamleam W; Annachhatre AP
    Bioresour Technol; 2007 Sep; 98(13):2538-48. PubMed ID: 17174088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of solution chemistry on particle characteristics during metal sulfide precipitation.
    Mokone TP; van Hille RP; Lewis AE
    J Colloid Interface Sci; 2010 Nov; 351(1):10-8. PubMed ID: 20705300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium.
    Vilar VJ; Botelho CM; Boaventura RA
    J Hazard Mater; 2007 Nov; 149(3):643-9. PubMed ID: 17507158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of the elemental composition of molasses and its suitability as carbon source for growth of sulphate-reducing bacteria.
    Teclu D; Tivchev G; Laing M; Wallis M
    J Hazard Mater; 2009 Jan; 161(2-3):1157-65. PubMed ID: 18541372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The elimination of selenium(IV) from aqueous solution by precipitation with sodium sulfide.
    Geoffroy N; Demopoulos GP
    J Hazard Mater; 2011 Jan; 185(1):148-54. PubMed ID: 20889255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization, morphology and composition of biofilm and precipitates from a sulphate-reducing fixed-bed reactor.
    Remoundaki E; Kousi P; Joulian C; Battaglia-Brunet F; Hatzikioseyian A; Tsezos M
    J Hazard Mater; 2008 May; 153(1-2):514-24. PubMed ID: 17931772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of benzoate secreted by Desulfotomaculum acetoxidans DSM 771 in sulfate uptake.
    Pawłowska-Cwiek L; Pado R
    Acta Biochim Pol; 2005; 52(4):797-802. PubMed ID: 16265594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies.
    Sahinkaya E
    J Hazard Mater; 2009 May; 164(1):105-13. PubMed ID: 18774640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of Cr3+ from aqueous solution by biosorption with aerobic granules.
    Yao L; Ye ZF; Tong MP; Lai P; Ni JR
    J Hazard Mater; 2009 Jun; 165(1-3):250-5. PubMed ID: 19013022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Clinical significance of sulfate-reducing bacteria for ulcerative colitis].
    Watanabe K; Mikamo H; Tanaka K
    Nihon Rinsho; 2007 Jul; 65(7):1337-46. PubMed ID: 17642254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site: biosorption of zinc.
    Monteiro CM; Marques AP; Castro PM; Xavier Malcata F
    Biodegradation; 2009 Sep; 20(5):629-41. PubMed ID: 19225897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stability investigations of zinc and cobalt precipitates immobilized by in situ bioprecipitation (ISBP) process.
    Satyawali Y; Schols E; Van Roy S; Dejonghe W; Diels L; Vanbroekhoven K
    J Hazard Mater; 2010 Sep; 181(1-3):217-25. PubMed ID: 20537795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biosorption of zinc from aqueous solution using Azadirachta indica bark: equilibrium and kinetic studies.
    King P; Anuradha K; Lahari SB; Prasanna Kumar Y; Prasad VS
    J Hazard Mater; 2008 Mar; 152(1):324-9. PubMed ID: 17681426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.