These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16904158)

  • 61. Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater.
    Rattanapan C; Boonsawang P; Kantachote D
    Bioresour Technol; 2009 Jan; 100(1):125-30. PubMed ID: 18619836
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor.
    Bijmans MF; van Helvoort PJ; Dar SA; Dopson M; Lens PN; Buisman CJ
    Water Res; 2009 Feb; 43(3):853-61. PubMed ID: 19059621
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mechanisms of hydrogen sulfide removal with steel making slag.
    Kim K; Asaoka S; Yamamoto T; Hayakawa S; Takeda K; Katayama M; Onoue T
    Environ Sci Technol; 2012 Sep; 46(18):10169-74. PubMed ID: 22894171
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The treatment of textile wastewater including chromium(VI) and reactive dye by sulfate-reducing bacterial enrichment.
    Cetin D; Dönmez S; Dönmez G
    J Environ Manage; 2008 Jul; 88(1):76-82. PubMed ID: 17363134
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Preparation, characterization, and Zn(2+) adsorption behavior of chemically modified MCM-41 with 5-mercapto-1-methyltetrazole.
    Pérez-Quintanilla D; Sánchez A; del Hierro I; Fajardo M; Sierra I
    J Colloid Interface Sci; 2007 Sep; 313(2):551-62. PubMed ID: 17532331
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination.
    Martins M; Faleiro ML; Barros RJ; Veríssimo AR; Barreiros MA; Costa MC
    J Hazard Mater; 2009 Jul; 166(2-3):706-13. PubMed ID: 19135795
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biological hydrogen sulfide production in an ethanol-lactate fed fluidized-bed bioreactor.
    Nevatalo LM; Mäkinen AE; Kaksonen AH; Puhakka JA
    Bioresour Technol; 2010 Jan; 101(1):276-84. PubMed ID: 19716290
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms.
    Gutierrez O; Park D; Sharma KR; Yuan Z
    Water Res; 2009 May; 43(9):2549-57. PubMed ID: 19345393
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions.
    Rao MM; Rao GP; Seshaiah K; Choudary NV; Wang MC
    Waste Manag; 2008; 28(5):849-58. PubMed ID: 17416512
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Adsorption behavior of Zn(II) on calcinated Chinese loess.
    Tang X; Li Z; Chen Y
    J Hazard Mater; 2009 Jan; 161(2-3):824-34. PubMed ID: 18514399
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Treatment of coking wastewater by using manganese and magnesium ores.
    Chen T; Huang X; Pan M; Jin S; Peng S; Fallgren PH
    J Hazard Mater; 2009 Sep; 168(2-3):843-7. PubMed ID: 19297089
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The use of Neem biomass for the biosorption of zinc from aqueous solutions.
    Arshad M; Zafar MN; Younis S; Nadeem R
    J Hazard Mater; 2008 Sep; 157(2-3):534-40. PubMed ID: 18289783
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Treatment of metal cyanide bearing wastewater by simultaneous adsorption and biodegradation (SAB).
    Dash RR; Balomajumder C; Kumar A
    J Hazard Mater; 2008 Mar; 152(1):387-96. PubMed ID: 17706348
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.
    Lin S; Krause F; Voordouw G
    Appl Microbiol Biotechnol; 2009 May; 83(2):369-76. PubMed ID: 19290520
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ion adsorption behaviour of hydroxyapatite with different crystallinities.
    Stötzel C; Müller FA; Reinert F; Niederdraenk F; Barralet JE; Gbureck U
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):91-5. PubMed ID: 19640688
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Photocatalytic degradation of L-acid by TiO2 supported on the activated carbon.
    Wang YP; Wang LJ; Peng PY
    J Environ Sci (China); 2006; 18(3):562-6. PubMed ID: 17294657
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of hydrogen sulfide on growth of sulfate reducing bacteria.
    Reis MA; Almeida JS; Lemos PC; Carrondo MJ
    Biotechnol Bioeng; 1992 Aug; 40(5):593-600. PubMed ID: 18601155
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cadmium biosorption by polyvinyl alcohol immobilized recombinant Escherichia coli.
    Kao WC; Wu JY; Chang CC; Chang JS
    J Hazard Mater; 2009 Sep; 169(1-3):651-8. PubMed ID: 19398152
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Selective removal and recovery of gallium and germanium from synthetic zinc refinery residues using biosorption and bioprecipitation.
    Saikia S; Costa RB; Sinharoy A; Cunha MP; Zaiat M; Lens PNL
    J Environ Manage; 2022 Sep; 317():115396. PubMed ID: 35751242
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Peroxidase activity in the sulfate-reducing bacterium Desulfotomaculum acetoxidans DSM 771.
    Pawłowska-Cwiek L
    Pol J Microbiol; 2010; 59(4):249-55. PubMed ID: 21466042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.