These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16904249)

  • 1. Phytoextraction of excess soil phosphorus.
    Sharma NC; Starnes DL; Sahi SV
    Environ Pollut; 2007 Mar; 146(1):120-7. PubMed ID: 16904249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoextraction of weathered p,p'-DDE by zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) under different cultivation conditions.
    Wang X; White JC; Gent MP; Iannucci-Berger W; Eitzer BD; Mattina MI
    Int J Phytoremediation; 2004; 6(4):363-85. PubMed ID: 15696707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil.
    Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake and accumulation of phosphorus by dominant plant species growing in a phosphorus mining area.
    Xiao G; Li T; Zhang X; Yu H; Huang H; Gupta DK
    J Hazard Mater; 2009 Nov; 171(1-3):542-50. PubMed ID: 19608342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-resistant bacteria enhance plant growth and copper phytoextraction.
    Yang R; Luo C; Chen Y; Wang G; Xu Y; Shen Z
    Int J Phytoremediation; 2013; 15(6):573-84. PubMed ID: 23819298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential for phytoremediation of polychlorinated biphenyl-(PCB-)contaminated soil.
    Zeeb BA; Amphlett JS; Rutter A; Reimer KJ
    Int J Phytoremediation; 2006; 8(3):199-221. PubMed ID: 17120525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diverse effects of arsenic on selected enzyme activities in soil-plant-microbe interactions.
    Lyubun YV; Pleshakova EV; Mkandawire M; Turkovskaya OV
    J Hazard Mater; 2013 Nov; 262():685-90. PubMed ID: 24121674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of plant age on PCB accumulation by Cucurbita pepo ssp. pepo.
    Low JE; Whitfield Aslund ML; Rutter A; Zeeb BA
    J Environ Qual; 2010; 39(1):245-50. PubMed ID: 20048312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-area experiment on uptake of metals by twelve plants growing in soils contaminated with multiple metals.
    Lai HY; Juang KW; Chen ZS
    Int J Phytoremediation; 2010; 12(8):785-97. PubMed ID: 21166348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of citric acid amendments on the availability of weathered PCBs to plant and earthworm species.
    White JC; Parrish ZD; Isleyen M; Gent MP; Iannucci-Berger W; Eitzer BD; Kelsey JW; Mattina MI
    Int J Phytoremediation; 2006; 8(1):63-79. PubMed ID: 16615308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops.
    Ma Y; Rajkumar M; Vicente JA; Freitas H
    Int J Phytoremediation; 2011 Feb; 13(2):126-39. PubMed ID: 21598781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria--effects on phytoremediation strategies.
    Marques AP; Moreira H; Franco AR; Rangel AO; Castro PM
    Chemosphere; 2013 Jun; 92(1):74-83. PubMed ID: 23582407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced organic phosphorus assimilation promoting biomass and shoot P hyperaccumulations in Lolium multiflorum grown under sterile conditions.
    Sharma NC; Sahi SV
    Environ Sci Technol; 2011 Dec; 45(24):10531-7. PubMed ID: 22035414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar mine spill.
    Madejón P; Murillo JM; Marañón T; Cabrera F; Soriano MA
    Sci Total Environ; 2003 May; 307(1-3):239-57. PubMed ID: 12711438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of swine manure on growth, P uptake and activities of acid phosphatase and phytase of Polygonum hydropiper.
    Ye D; Li T; Chen G; Zheng Z; Yu H; Zhang X
    Chemosphere; 2014 Jun; 105():139-45. PubMed ID: 24485813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation potential of Helianthus annuus L in sewage-irrigated Indo-Gangetic alluvial soils.
    Mani D; Sharma B; Kumar C; Pathak N; Balak S
    Int J Phytoremediation; 2012 Mar; 14(3):235-46. PubMed ID: 22567708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of compost amendment on pyrene availability from artificially spiked soil to two subspecies of Cucurbita pepo.
    Kobayashi T; Navarro RR; Tatsumi K; Iimura Y
    Sci Total Environ; 2008 Oct; 404(1):1-9. PubMed ID: 18632137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The uptake of radionuclides by beans, squash, and corn growing in contaminated alluvial soils at Los Alamos National Laboratory.
    Fresquez PR; Armstrong DR; Mullen MA; Naranjo L
    J Environ Sci Health B; 1998 Jan; 33(1):99-121. PubMed ID: 9491570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils.
    Meers E; Ruttens A; Hopgood M; Lesage E; Tack FM
    Chemosphere; 2005 Oct; 61(4):561-72. PubMed ID: 16202810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.