BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 16904793)

  • 1. A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds.
    Wojtyla Ł; Garnczarska M; Zalewski T; Bednarski W; Ratajczak L; Jurga S
    J Plant Physiol; 2006 Dec; 163(12):1207-20. PubMed ID: 16904793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ability of lupine seeds to germinate and to tolerate desiccation as related to changes in free radical level and antioxidants in freshly harvested seeds.
    Garnczarska M; Bednarski W; Jancelewicz M
    Plant Physiol Biochem; 2009 Jan; 47(1):56-62. PubMed ID: 18945622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds.
    Pukacka S; Ratajczak E
    J Plant Physiol; 2006 Dec; 163(12):1259-66. PubMed ID: 17126729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mobilization of defence mechanisms in the early stages of pea seed germination against Ascochyta pisi.
    Morkunas I; Formela M; Marczak L; Stobiecki M; Bednarski W
    Protoplasma; 2013 Feb; 250(1):63-75. PubMed ID: 22274650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds.
    Ding Y; Cheng H; Song S
    Sci China C Life Sci; 2008 Sep; 51(9):842-53. PubMed ID: 18726532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process.
    Huang H; Song S
    Plant Physiol Biochem; 2013 Jul; 68():61-70. PubMed ID: 23628926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds.
    Tommasi F; Paciolla C; de Pinto MC; De Gara L
    J Exp Bot; 2001 Aug; 52(361):1647-54. PubMed ID: 11479329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible involvement of reactive oxygen species scavenging enzymes in desiccation sensitivity of Antiaris toxicaria seeds and axes.
    Cheng HY; Song SQ
    J Integr Plant Biol; 2008 Dec; 50(12):1549-56. PubMed ID: 19093973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of embryo axes of germinating seeds of yellow lupine to Fusarium oxysporum.
    Morkunas I; Bednarski W; Kozłowska M
    Plant Physiol Biochem; 2004 Jun; 42(6):493-9. PubMed ID: 15246062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity levels and expression of antioxidant enzymes in the ascorbate-glutathione cycle in artificially aged rice seed.
    Yin G; Xin X; Song C; Chen X; Zhang J; Wu S; Li R; Liu X; Lu X
    Plant Physiol Biochem; 2014 Jul; 80():1-9. PubMed ID: 24705135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum.
    Kranner I; Roach T; Beckett RP; Whitaker C; Minibayeva FV
    J Plant Physiol; 2010 Jul; 167(10):805-11. PubMed ID: 20303611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production and scavenging of reactive oxygen species in Fagus sylvatica seeds during storage at varied temperature and humidity.
    Pukacka S; Ratajczak E
    J Plant Physiol; 2005 Aug; 162(8):873-85. PubMed ID: 16146313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic and activity profiles of ascorbate-glutathione cycle enzymes in germinating barley embryo.
    Bønsager BC; Shahpiri A; Finnie C; Svensson B
    Phytochemistry; 2010 Oct; 71(14-15):1650-6. PubMed ID: 20727558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced mitochondrial and ascorbate-glutathione activity after artificial ageing in soybean seed.
    Xin X; Tian Q; Yin G; Chen X; Zhang J; Ng S; Lu X
    J Plant Physiol; 2014 Jan; 171(2):140-7. PubMed ID: 24331429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exogenous 5-aminolevulenic acid promotes seed germination in Elymus nutans against oxidative damage induced by cold stress.
    Fu J; Sun Y; Chu X; Xu Y; Hu T
    PLoS One; 2014; 9(9):e107152. PubMed ID: 25207651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights on germinability and desiccation tolerance in developing neem seeds (Azadirachta indica): Role of AOS, antioxidative enzymes and dehydrin-like protein.
    Sahu B; Sahu AK; Chennareddy SR; Soni A; Naithani SC
    Plant Physiol Biochem; 2017 Mar; 112():64-73. PubMed ID: 28040634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental and seed aging mediated regulation of antioxidative genes and differential expression of proteins during pre- and post-germinative phases in pea.
    Yao Z; Liu L; Gao F; Rampitsch C; Reinecke DM; Ozga JA; Ayele BT
    J Plant Physiol; 2012 Oct; 169(15):1477-88. PubMed ID: 22742946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium induced mitochondrial redox changes in germinating pea seed.
    Smiri M; Chaoui A; Rouhier N; Kamel C; Gelhaye E; Jacquot JP; El Ferjani E
    Biometals; 2010 Dec; 23(6):973-84. PubMed ID: 20512401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds.
    Bhardwaj J; Anand A; Nagarajan S
    Plant Physiol Biochem; 2012 Aug; 57():67-73. PubMed ID: 22683465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings.
    Tripathi DK; Singh S; Singh S; Srivastava PK; Singh VP; Singh S; Prasad SM; Singh PK; Dubey NK; Pandey AC; Chauhan DK
    Plant Physiol Biochem; 2017 Jan; 110():167-177. PubMed ID: 27449300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.