These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1120 related articles for article (PubMed ID: 16904809)
1. Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase. Bartling A; Worek F; Szinicz L; Thiermann H Toxicology; 2007 Apr; 233(1-3):166-72. PubMed ID: 16904809 [TBL] [Abstract][Full Text] [Related]
2. Interaction of pentylsarin analogues with human acetylcholinesterase: a kinetic study. Worek F; Herkert NM; Koller M; Aurbek N; Thiermann H Toxicol Lett; 2009 Jun; 187(2):119-23. PubMed ID: 19429253 [TBL] [Abstract][Full Text] [Related]
3. Kinetic analysis of interactions of different sarin and tabun analogues with human acetylcholinesterase and oximes: is there a structure-activity relationship? Aurbek N; Herkert NM; Koller M; Thiermann H; Worek F Chem Biol Interact; 2010 Sep; 187(1-3):215-9. PubMed ID: 20105433 [TBL] [Abstract][Full Text] [Related]
4. Suitability of human butyrylcholinesterase as therapeutic marker and pseudo catalytic scavenger in organophosphate poisoning: a kinetic analysis. Aurbek N; Thiermann H; Eyer F; Eyer P; Worek F Toxicology; 2009 May; 259(3):133-9. PubMed ID: 19428953 [TBL] [Abstract][Full Text] [Related]
5. Kinetic analysis of reactivation and aging of human acetylcholinesterase inhibited by different phosphoramidates. Worek F; Aurbek N; Koller M; Becker C; Eyer P; Thiermann H Biochem Pharmacol; 2007 Jun; 73(11):1807-17. PubMed ID: 17382909 [TBL] [Abstract][Full Text] [Related]
6. Analysis of inhibition, reactivation and aging kinetics of highly toxic organophosphorus compounds with human and pig acetylcholinesterase. Aurbek N; Thiermann H; Szinicz L; Eyer P; Worek F Toxicology; 2006 Jul; 224(1-2):91-9. PubMed ID: 16720069 [TBL] [Abstract][Full Text] [Related]
7. Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Worek F; Thiermann H; Szinicz L; Eyer P Biochem Pharmacol; 2004 Dec; 68(11):2237-48. PubMed ID: 15498514 [TBL] [Abstract][Full Text] [Related]
8. Effect of reversible ligands on oxime-induced reactivation of sarin- and cyclosarin-inhibited human acetylcholinesterase. Scheffel C; Thiermann H; Worek F Toxicol Lett; 2015 Feb; 232(3):557-65. PubMed ID: 25522658 [TBL] [Abstract][Full Text] [Related]
9. Comparative study of oxime-induced reactivation of erythrocyte and muscle AChE from different animal species following inhibition by sarin or paraoxon. Herkert NM; Aurbek N; Eyer P; Thiermann H; Worek F Toxicol Lett; 2010 May; 194(3):94-101. PubMed ID: 20156534 [TBL] [Abstract][Full Text] [Related]
10. Reactivation kinetics of a homologous series of bispyridinium bis-oximes with nerve agent-inhibited human acetylcholinesterase. Worek F; von der Wellen J; Musilek K; Kuca K; Thiermann H Arch Toxicol; 2012 Sep; 86(9):1379-86. PubMed ID: 22437842 [TBL] [Abstract][Full Text] [Related]
11. Mechanism for potent reactivation ability of H oximes analyzed by reactivation kinetic studies with cholinesterases from different species. Luo C; Chambers C; Yang Y; Saxena A Chem Biol Interact; 2010 Sep; 187(1-3):185-90. PubMed ID: 20096273 [TBL] [Abstract][Full Text] [Related]
12. Structural requirements for effective oximes--evaluation of kinetic in vitro data with phosphylated human AChE and structurally different oximes. Worek F; Wille T; Koller M; Thiermann H Chem Biol Interact; 2013 Mar; 203(1):125-8. PubMed ID: 22827894 [TBL] [Abstract][Full Text] [Related]
13. A common mechanism for resistance to oxime reactivation of acetylcholinesterase inhibited by organophosphorus compounds. Maxwell DM; Brecht KM; Sweeney RE Chem Biol Interact; 2013 Mar; 203(1):72-6. PubMed ID: 22982773 [TBL] [Abstract][Full Text] [Related]
14. Reactivation and aging kinetics of human acetylcholinesterase inhibited by organophosphonylcholines. Worek F; Thiermann H; Szinicz L Arch Toxicol; 2004 Apr; 78(4):212-7. PubMed ID: 14647978 [TBL] [Abstract][Full Text] [Related]
15. Structure-activity analysis of aging and reactivation of human butyrylcholinesterase inhibited by analogues of tabun. Carletti E; Aurbek N; Gillon E; Loiodice M; Nicolet Y; Fontecilla-Camps JC; Masson P; Thiermann H; Nachon F; Worek F Biochem J; 2009 Jun; 421(1):97-106. PubMed ID: 19368529 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of nine oximes on in vivo reactivation of blood, brain, and tissue cholinesterase activity inhibited by organophosphorus nerve agents at lethal dose. Shih TM; Skovira JW; O'Donnell JC; McDonough JH Toxicol Mech Methods; 2009 Sep; 19(6-7):386-400. PubMed ID: 19778239 [TBL] [Abstract][Full Text] [Related]
17. Interactions between acetylcholinesterase, toxic organophosphorus compounds and a short series of structurally related non-oxime reactivators: Analysis of reactivation and inhibition kinetics in vitro. Horn G; de Koning MC; van Grol M; Thiermann H; Worek F Toxicol Lett; 2018 Dec; 299():218-225. PubMed ID: 30312685 [TBL] [Abstract][Full Text] [Related]
18. Potential of two new oximes in reactivate human acetylcholinesterase and butyrylcholinesterase inhibited by organophosphate compounds: an in vitro study. Costa MD; Freitas ML; Soares FA; Carratu VS; Brandão R Toxicol In Vitro; 2011 Dec; 25(8):2120-3. PubMed ID: 21983245 [TBL] [Abstract][Full Text] [Related]
19. Nonquaternary reactivators for organophosphate-inhibited cholinesterases. Kalisiak J; Ralph EC; Cashman JR J Med Chem; 2012 Jan; 55(1):465-74. PubMed ID: 22206546 [TBL] [Abstract][Full Text] [Related]
20. Kinetic prerequisites of oximes as effective reactivators of organophosphate-inhibited acetylcholinesterase: a theoretical approach. Worek F; Aurbek N; Wille T; Eyer P; Thiermann H J Enzyme Inhib Med Chem; 2011 Jun; 26(3):303-8. PubMed ID: 20807085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]