These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 16904895)
1. Subdural haematomas complicating insertion of the low-pressure Novus hydrocephalus valve: a simple method for intra-operative testing of the anti-siphon device. Chong CC; van Gelder JM J Clin Neurosci; 2006 Aug; 13(7):759-62. PubMed ID: 16904895 [TBL] [Abstract][Full Text] [Related]
2. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme. Czosnyka Z; Czosnyka M; Richards HK; Pickard JD Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485 [TBL] [Abstract][Full Text] [Related]
3. [Effect of the anti-siphon device (ASD) on the function of various hydrocephalus drainage systems in the child]. Gruber R; Glaser F Z Kinderchir; 1986 Dec; 41(6):327-34. PubMed ID: 3825299 [TBL] [Abstract][Full Text] [Related]
4. Revision to an adjustable non-siphon control valve in low pressure hydrocephalus: therapeutic siphoning and a new perspective on NPH: series of 3 cases and review of the literature. Trinh VT; Duckworth EA Clin Neurol Neurosurg; 2013 Feb; 115(2):175-8. PubMed ID: 22770726 [TBL] [Abstract][Full Text] [Related]
5. Posture-independent piston valve: a novel valve mechanism that actuates based on intracranial pressure alone. Medow JE; Luzzio CC J Neurosurg Pediatr; 2012 Jan; 9(1):64-8. PubMed ID: 22208323 [TBL] [Abstract][Full Text] [Related]
6. Clinical experience with the low pressure Novus valve in the treatment of adult hydrocephalus. Chong CC; van Gelder J; Sheridan M J Clin Neurosci; 2002 Sep; 9(5):539-43. PubMed ID: 12383411 [TBL] [Abstract][Full Text] [Related]
8. Fluid flow performance of a new siphon-control device for ventricular shunts. Horton D; Pollay M J Neurosurg; 1990 Jun; 72(6):926-32. PubMed ID: 2338577 [TBL] [Abstract][Full Text] [Related]
9. In vitro experiment for verification of the tandem shunt valve system: a novel method for treating hydrocephalus by flexibly controlling cerebrospinal fluid flow and intracranial pressure. Aihara Y; Shoji I; Okada Y J Neurosurg Pediatr; 2013 Jan; 11(1):43-7. PubMed ID: 23140212 [TBL] [Abstract][Full Text] [Related]
11. The delta valve: how does its clinical performance compare with two other pressure differential valves without antisiphon control? Davis SE; Levy ML; McComb JG; Sposto R Pediatr Neurosurg; 2000 Aug; 33(2):58-63. PubMed ID: 11070430 [TBL] [Abstract][Full Text] [Related]
12. Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture? Gehlen M; Eklund A; Kurtcuoglu V; Malm J; Schmid Daners M Acta Neurochir (Wien); 2017 Aug; 159(8):1389-1397. PubMed ID: 28660395 [TBL] [Abstract][Full Text] [Related]
13. Cerebrospinal fluid shunts: an experimental evaluation of flow rates and pressure values in the anti-siphon valve. Fox JL; Portnoy HD; Shulte RR Surg Neurol; 1973 Sep; 1(5):299-302. PubMed ID: 4724951 [No Abstract] [Full Text] [Related]
14. Risks of using siphon-reducing devices. Kremer P; Aschoff A; Kunze S Childs Nerv Syst; 1994 May; 10(4):231-5. PubMed ID: 7923232 [TBL] [Abstract][Full Text] [Related]
15. Anti-siphon and reversible occlusion valves for shunting in hydrocephalus and preventing post-shunt subdural hematomas. Portnoy HD; Schulte RR; Fox JL; Croissant PD; Tripp L J Neurosurg; 1973 Jun; 38(6):729-38. PubMed ID: 4710652 [No Abstract] [Full Text] [Related]
16. Importance of anti-siphon devices in the treatment of pediatric hydrocephalus. Tokoro K; Chiba Y; Abe H; Tanaka N; Yamataki A; Kanno H Childs Nerv Syst; 1994 May; 10(4):236-8. PubMed ID: 7923233 [TBL] [Abstract][Full Text] [Related]
17. Is there a reasonable differential indication for different hydrocephalus shunt systems? Trost HA Childs Nerv Syst; 1995 Apr; 11(4):189-92. PubMed ID: 7621478 [TBL] [Abstract][Full Text] [Related]
18. [Computer-assisted test ring for cerebrospinal fluid drainage systems]. Leonhardt S; Bluhm V; Steudel WI Biomed Tech (Berl); 1994; 39(7-8):188-95. PubMed ID: 7948662 [TBL] [Abstract][Full Text] [Related]
19. Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves. Inoue T; Kuzu Y; Ogasawara K; Ogawa A J Neurosurg; 2005 Aug; 103(2 Suppl):163-5. PubMed ID: 16370283 [TBL] [Abstract][Full Text] [Related]
20. The importance of valve alignment in determining the pressure/flow characteristics of differential pressure shunt valves with anti-gravity devices. Francel PC; Stevens FA; Tompkins P; Pollay M Childs Nerv Syst; 2001 Feb; 17(3):163-7. PubMed ID: 11305770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]