These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 16904959)
1. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bevill G; Eswaran SK; Gupta A; Papadopoulos P; Keaveny TM Bone; 2006 Dec; 39(6):1218-25. PubMed ID: 16904959 [TBL] [Abstract][Full Text] [Related]
2. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. Morgan EF; Bayraktar HH; Yeh OC; Majumdar S; Burghardt A; Keaveny TM J Biomech; 2004 Sep; 37(9):1413-20. PubMed ID: 15275849 [TBL] [Abstract][Full Text] [Related]
3. Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. Stauber M; Rapillard L; van Lenthe GH; Zysset P; Müller R J Bone Miner Res; 2006 Apr; 21(4):586-95. PubMed ID: 16598379 [TBL] [Abstract][Full Text] [Related]
4. The role of cortical shell and trabecular fabric in finite element analysis of the human vertebral body. Chevalier Y; Pahr D; Zysset PK J Biomech Eng; 2009 Nov; 131(11):111003. PubMed ID: 20353254 [TBL] [Abstract][Full Text] [Related]
5. The effects of side-artifacts on the elastic modulus of trabecular bone. Un K; Bevill G; Keaveny TM J Biomech; 2006; 39(11):1955-63. PubMed ID: 16824533 [TBL] [Abstract][Full Text] [Related]
6. Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains. Hosseini HS; Pahr DH; Zysset PK J Mech Behav Biomed Mater; 2012 Nov; 15():93-102. PubMed ID: 23032429 [TBL] [Abstract][Full Text] [Related]
7. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method. Tomar V J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508 [TBL] [Abstract][Full Text] [Related]
8. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation. Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433 [TBL] [Abstract][Full Text] [Related]
9. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Pahr DH; Zysset PK Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122 [TBL] [Abstract][Full Text] [Related]
10. Damage in trabecular bone at small strains. Morgan EF; Yeh OC; Keaveny TM Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020 [TBL] [Abstract][Full Text] [Related]
11. Mechanical strength of trabecular bone at the knee. Hvid I Dan Med Bull; 1988 Aug; 35(4):345-65. PubMed ID: 3048922 [TBL] [Abstract][Full Text] [Related]
12. Improvements in vertebral body strength under teriparatide treatment assessed in vivo by finite element analysis: results from the EUROFORS study. Graeff C; Chevalier Y; Charlebois M; Varga P; Pahr D; Nickelsen TN; Morlock MM; Glüer CC; Zysset PK J Bone Miner Res; 2009 Oct; 24(10):1672-80. PubMed ID: 19419306 [TBL] [Abstract][Full Text] [Related]
13. Compressive fatigue behavior of human vertebral trabecular bone. Rapillard L; Charlebois M; Zysset PK J Biomech; 2006; 39(11):2133-9. PubMed ID: 16051256 [TBL] [Abstract][Full Text] [Related]
14. Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations. Verhulp E; van Rietbergen B; Müller R; Huiskes R J Biomech; 2008; 41(7):1479-85. PubMed ID: 18423473 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the mechanical interaction of the trabecular core with an external shell using rapid prototype and finite element models. Mc Donnell P; Harrison N; Lohfeld S; Kennedy O; Zhang Y; Mc Hugh PE J Mech Behav Biomed Mater; 2010 Jan; 3(1):63-76. PubMed ID: 19878903 [TBL] [Abstract][Full Text] [Related]
16. Fatigue of bone and bones: an analysis based on stressed volume. Taylor D J Orthop Res; 1998 Mar; 16(2):163-9. PubMed ID: 9621890 [TBL] [Abstract][Full Text] [Related]
17. Strength reductions from metastatic cortical defects in long bones. McBroom RJ; Cheal EJ; Hayes WC J Orthop Res; 1988; 6(3):369-78. PubMed ID: 3357085 [TBL] [Abstract][Full Text] [Related]
18. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the failure behaviour of vertebral trabecular architectures under uni-axial compression and wedge action loading conditions. McDonnell P; Harrison N; McHugh PE Med Eng Phys; 2010 Jul; 32(6):569-76. PubMed ID: 20233666 [TBL] [Abstract][Full Text] [Related]
20. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone. Vaughan TJ; McCarthy CT; McNamara LM J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]