These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 16905100)
1. Origin of exopolyphosphatase processivity: Fusion of an ASKHA phosphotransferase and a cyclic nucleotide phosphodiesterase homolog. Alvarado J; Ghosh A; Janovitz T; Jauregui A; Hasson MS; Sanders DA Structure; 2006 Aug; 14(8):1263-72. PubMed ID: 16905100 [TBL] [Abstract][Full Text] [Related]
2. The structure of the exopolyphosphatase (PPX) from Escherichia coli O157:H7 suggests a binding mode for long polyphosphate chains. Rangarajan ES; Nadeau G; Li Y; Wagner J; Hung MN; Schrag JD; Cygler M; Matte A J Mol Biol; 2006 Jun; 359(5):1249-60. PubMed ID: 16678853 [TBL] [Abstract][Full Text] [Related]
3. Structural characterization of the stringent response related exopolyphosphatase/guanosine pentaphosphate phosphohydrolase protein family. Kristensen O; Laurberg M; Liljas A; Kastrup JS; Gajhede M Biochemistry; 2004 Jul; 43(28):8894-900. PubMed ID: 15248747 [TBL] [Abstract][Full Text] [Related]
4. Structural analysis of the PP2C phosphatase tPphA from Thermosynechococcus elongatus: a flexible flap subdomain controls access to the catalytic site. Schlicker C; Fokina O; Kloft N; Grüne T; Becker S; Sheldrick GM; Forchhammer K J Mol Biol; 2008 Feb; 376(2):570-81. PubMed ID: 18164312 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional structure of a cyclic-nucleotide phosphodiesterase from human brain. Sakamoto Y; Tanaka N; Ichimiya T; Kurihara T; Nakamura KT Nucleic Acids Symp Ser (Oxf); 2004; (48):157-8. PubMed ID: 17150526 [TBL] [Abstract][Full Text] [Related]
7. The N-terminal domain of 2',3'-cyclic nucleotide 3'-phosphodiesterase harbors a GTP/ATP binding site. Stingo S; Masullo M; Polverini E; Laezza C; Ruggiero I; Arcone R; Ruozi E; Dal Piaz F; Malfitano AM; D'Ursi AM; Bifulco M Chem Biol Drug Des; 2007 Dec; 70(6):502-10. PubMed ID: 17986204 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of the RNA 2'-phosphotransferase from Aeropyrum pernix K1. Kato-Murayama M; Bessho Y; Shirouzu M; Yokoyama S J Mol Biol; 2005 Apr; 348(2):295-305. PubMed ID: 15811369 [TBL] [Abstract][Full Text] [Related]
9. A novel two-domain architecture within the amino acid kinase enzyme family revealed by the crystal structure of Escherichia coli glutamate 5-kinase. Marco-Marín C; Gil-Ortiz F; Pérez-Arellano I; Cervera J; Fita I; Rubio V J Mol Biol; 2007 Apr; 367(5):1431-46. PubMed ID: 17321544 [TBL] [Abstract][Full Text] [Related]
10. The crystal structure of the bifunctional deaminase/reductase RibD of the riboflavin biosynthetic pathway in Escherichia coli: implications for the reductive mechanism. Stenmark P; Moche M; Gurmu D; Nordlund P J Mol Biol; 2007 Oct; 373(1):48-64. PubMed ID: 17765262 [TBL] [Abstract][Full Text] [Related]
11. Putative binding mode of Escherichia coli exopolyphosphatase and polyphosphates based on a hybrid in silico/biochemical approach. Boetsch C; Aguayo-Villegas DR; Gonzalez-Nilo FD; Lisa ÁT; Beassoni PR Arch Biochem Biophys; 2016 Sep; 606():64-72. PubMed ID: 27424154 [TBL] [Abstract][Full Text] [Related]
12. The structure of exopolyphosphatase (PPX) from Porphyromonas gingivalis in complex with substrate analogs and magnesium ions reveals the basis for polyphosphate processivity. Zhang A; Lu Z; Xu Y; Qi T; Li W; Zhang L; Cui Z J Struct Biol; 2021 Sep; 213(3):107767. PubMed ID: 34214602 [TBL] [Abstract][Full Text] [Related]
13. Structure of Escherichia coli exonuclease I in complex with thymidine 5'-monophosphate. Busam RD Acta Crystallogr D Biol Crystallogr; 2008 Feb; 64(Pt 2):206-10. PubMed ID: 18219121 [TBL] [Abstract][Full Text] [Related]
14. Structure of dimeric SecA, the Escherichia coli preprotein translocase motor. Papanikolau Y; Papadovasilaki M; Ravelli RB; McCarthy AA; Cusack S; Economou A; Petratos K J Mol Biol; 2007 Mar; 366(5):1545-57. PubMed ID: 17229438 [TBL] [Abstract][Full Text] [Related]
15. Ordering of C-terminal loop and glutaminase domains of glucosamine-6-phosphate synthase promotes sugar ring opening and formation of the ammonia channel. Mouilleron S; Badet-Denisot MA; Golinelli-Pimpaneau B J Mol Biol; 2008 Apr; 377(4):1174-85. PubMed ID: 18295797 [TBL] [Abstract][Full Text] [Related]
16. Structures of dimeric nonstandard nucleotide triphosphate pyrophosphatase from Pyrococcus horikoshii OT3: functional significance of interprotomer conformational changes. Lokanath NK; Pampa KJ; Takio K; Kunishima N J Mol Biol; 2008 Jan; 375(4):1013-25. PubMed ID: 18062990 [TBL] [Abstract][Full Text] [Related]
17. The crystal structure of the cytosolic exopolyphosphatase from Saccharomyces cerevisiae reveals the basis for substrate specificity. Ugochukwu E; Lovering AL; Mather OC; Young TW; White SA J Mol Biol; 2007 Aug; 371(4):1007-21. PubMed ID: 17599355 [TBL] [Abstract][Full Text] [Related]
18. The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans. Raczynska J; Olchowy J; Konariev PV; Svergun DI; Milewski S; Rypniewski W J Mol Biol; 2007 Sep; 372(3):672-88. PubMed ID: 17681543 [TBL] [Abstract][Full Text] [Related]
19. Structural characterization of the ribonuclease H-like type ASKHA superfamily kinase MK0840 from Methanopyrus kandleri. Schacherl M; Waltersperger S; Baumann U Acta Crystallogr D Biol Crystallogr; 2013 Dec; 69(Pt 12):2440-50. PubMed ID: 24311585 [TBL] [Abstract][Full Text] [Related]
20. Acyl carrier protein phosphodiesterase (AcpH) of Escherichia coli is a non-canonical member of the HD phosphatase/phosphodiesterase family. Thomas J; Rigden DJ; Cronan JE Biochemistry; 2007 Jan; 46(1):129-36. PubMed ID: 17198382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]