These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1023 related articles for article (PubMed ID: 16905146)
1. The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella. Raymond B; Sayyed AH; Wright DJ J Invertebr Pathol; 2006 Oct; 93(2):114-20. PubMed ID: 16905146 [TBL] [Abstract][Full Text] [Related]
2. Cross-resistance between a Bacillus thuringiensis Cry toxin and non-Bt insecticides in the diamondback moth. Sayyed AH; Moores G; Crickmore N; Wright DJ Pest Manag Sci; 2008 Aug; 64(8):813-9. PubMed ID: 18383197 [TBL] [Abstract][Full Text] [Related]
3. Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella. Sayyed AH; Raymond B; Ibiza-Palacios MS; Escriche B; Wright DJ Appl Environ Microbiol; 2004 Dec; 70(12):7010-7. PubMed ID: 15574894 [TBL] [Abstract][Full Text] [Related]
4. Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Schuler TH; Denholm I; Clark SJ; Stewart CN; Poppy GM J Insect Physiol; 2004 May; 50(5):435-43. PubMed ID: 15121457 [TBL] [Abstract][Full Text] [Related]
6. Resistance to Bacillus thuringiensis in the cabbage looper (Trichoplusia ni) increases susceptibility to a nucleopolyhedrovirus. Sarfraz RM; Cervantes V; Myers JH J Invertebr Pathol; 2010 Oct; 105(2):204-6. PubMed ID: 20600095 [TBL] [Abstract][Full Text] [Related]
7. A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Raymond B; Johnston PR; Wright DJ; Ellis RJ; Crickmore N; Bonsall MB Environ Microbiol; 2009 Oct; 11(10):2556-63. PubMed ID: 19555371 [TBL] [Abstract][Full Text] [Related]
8. Lack of fitness costs and inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a near-isogenic strain of Plutella xylostella (Lepidoptera: Plutellidae). Zhu X; Yang Y; Wu Q; Wang S; Xie W; Guo Z; Kang S; Xia J; Zhang Y Pest Manag Sci; 2016 Feb; 72(2):289-97. PubMed ID: 25684167 [TBL] [Abstract][Full Text] [Related]
9. Early detection of field-evolved resistance to Bt cotton in China: cotton bollworm and pink bollworm. Tabashnik BE; Wu K; Wu Y J Invertebr Pathol; 2012 Jul; 110(3):301-6. PubMed ID: 22537835 [TBL] [Abstract][Full Text] [Related]
10. Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China. Wu K J Invertebr Pathol; 2007 Jul; 95(3):220-3. PubMed ID: 17467730 [TBL] [Abstract][Full Text] [Related]
11. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Zhao JZ; Cao J; Li Y; Collins HL; Roush RT; Earle ED; Shelton AM Nat Biotechnol; 2003 Dec; 21(12):1493-7. PubMed ID: 14608363 [TBL] [Abstract][Full Text] [Related]
12. CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.). Guo Z; Sun D; Kang S; Zhou J; Gong L; Qin J; Guo L; Zhu L; Bai Y; Luo L; Zhang Y Insect Biochem Mol Biol; 2019 Apr; 107():31-38. PubMed ID: 30710623 [TBL] [Abstract][Full Text] [Related]
13. Development and mechanisms of resistance to Bacillus thuringiensis endotoxin Cry1Ac in the American bollworm, Helicoverpa armigera (Hübner). Chandrashekar K; Gujar GT Indian J Exp Biol; 2004 Feb; 42(2):164-73. PubMed ID: 15282949 [TBL] [Abstract][Full Text] [Related]
14. Cross-resistance and inheritance of resistance to Bacillus thuringiensis toxin Cry1Ac in diamondback moth (Plutella xylostella L) from lowland Malaysia. Sayyed AH; Wright DJ Pest Manag Sci; 2001 May; 57(5):413-21. PubMed ID: 11374157 [TBL] [Abstract][Full Text] [Related]
15. Binding and Oligomerization of Modified and Native Bt Toxins in Resistant and Susceptible Pink Bollworm. Ocelotl J; Sánchez J; Arroyo R; García-Gómez BI; Gómez I; Unnithan GC; Tabashnik BE; Bravo A; Soberón M PLoS One; 2015; 10(12):e0144086. PubMed ID: 26633693 [TBL] [Abstract][Full Text] [Related]
16. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Ma G; Roberts H; Sarjan M; Featherstone N; Lahnstein J; Akhurst R; Schmidt O Insect Biochem Mol Biol; 2005 Jul; 35(7):729-39. PubMed ID: 15894190 [TBL] [Abstract][Full Text] [Related]
17. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.). Guo Z; Kang S; Zhu X; Wu Q; Wang S; Xie W; Zhang Y J Invertebr Pathol; 2015 Mar; 126():21-30. PubMed ID: 25595643 [TBL] [Abstract][Full Text] [Related]
18. Binding of Bacillus thuringiensis Cry1A toxins to brush border membrane vesicles of midgut from Cry1Ac susceptible and resistant Plutella xylostella. Higuchi M; Haginoya K; Yamazaki T; Miyamoto K; Katagiri T; Tomimoto K; Shitomi Y; Hayakawa T; Sato R; Hori H Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):716-24. PubMed ID: 17543562 [TBL] [Abstract][Full Text] [Related]
19. Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants. Ruiz de Escudero I; Estela A; Escriche B; Caballero P Appl Environ Microbiol; 2007 Jan; 73(1):337-40. PubMed ID: 17085712 [TBL] [Abstract][Full Text] [Related]
20. Inheritance of resistance to Bt canola in a field-derived population of Plutella xylostella. Sayyed AH; Schuler TH; Wright DJ Pest Manag Sci; 2003 Nov; 59(11):1197-202. PubMed ID: 14620045 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]