BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16905251)

  • 1. Increased stress-induced analgesia in mice lacking the proneuropeptide convertase PC2.
    Croissandeau G; Wahnon F; Yashpal K; Seidah NG; Coderre TJ; Chrétien M; Mbikay M
    Neurosci Lett; 2006 Oct; 406(1-2):71-5. PubMed ID: 16905251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased sensitivity to acute and persistent pain in neuron-specific endothelin-1 knockout mice.
    Hasue F; Kuwaki T; Kisanuki YY; Yanagisawa M; Moriya H; Fukuda Y; Shimoyama M
    Neuroscience; 2005; 130(2):349-58. PubMed ID: 15664691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The prolactin-releasing peptide antagonizes the opioid system through its receptor GPR10.
    Laurent P; Becker JA; Valverde O; Ledent C; de Kerchove d'Exaerde A; Schiffmann SN; Maldonado R; Vassart G; Parmentier M
    Nat Neurosci; 2005 Dec; 8(12):1735-41. PubMed ID: 16299503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of NTS2 receptors in stress-induced analgesia.
    Lafrance M; Roussy G; Belleville K; Maeno H; Beaudet N; Wada K; Sarret P
    Neuroscience; 2010 Mar; 166(2):639-52. PubMed ID: 20035838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress-induced analgesia and morphine responses are changed in catechol-O-methyltransferase-deficient male mice.
    Kambur O; Männistö PT; Viljakka K; Reenilä I; Lemberg K; Kontinen VK; Karayiorgou M; Gogos JA; Kalso E
    Basic Clin Pharmacol Toxicol; 2008 Oct; 103(4):367-73. PubMed ID: 18834357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interleukin-1 signaling modulates stress-induced analgesia.
    Wolf G; Yirmiya R; Kreisel T; Goshen I; Weidenfeld J; Poole S; Shavit Y
    Brain Behav Immun; 2007 Jul; 21(5):652-9. PubMed ID: 17222530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attenuation of opioid analgesic tolerance in p75 neurotrophin receptor null mutant mice.
    Trang T; Koblic P; Kawaja M; Jhamandas K
    Neurosci Lett; 2009 Feb; 451(1):69-73. PubMed ID: 19114089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and colocalization of cholecystokinin with the prohormone convertase enzymes PC1, PC2, and PC5 in rat brain.
    Cain BM; Connolly K; Blum A; Vishnuvardhan D; Marchand JE; Beinfeld MC
    J Comp Neurol; 2003 Dec; 467(3):307-25. PubMed ID: 14608596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of endoproteolytic processing of dynorphins by proprotein convertases using mouse spinal cord S9 fractions and mass spectrometry.
    Orduna AR; Beaudry F
    Neuropeptides; 2016 Jun; 57():85-94. PubMed ID: 26578270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuropeptide FF and related peptides attenuates warm-, but not cold-water swim stress-induced analgesia in mice.
    Li N; Han ZL; Fang Q; Wang ZL; Tang HZ; Ren H; Wang R
    Behav Brain Res; 2012 Aug; 233(2):428-33. PubMed ID: 22659392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of prohormone convertase-2 in hypothalamic neuropeptide processing: a quantitative neuropeptidomic study.
    Pan H; Che FY; Peng B; Steiner DF; Pintar JE; Fricker LD
    J Neurochem; 2006 Sep; 98(6):1763-77. PubMed ID: 16903874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain and sex differences in the expression of nociceptive behavior and stress-induced analgesia in rats.
    Vendruscolo LF; Pamplona FA; Takahashi RN
    Brain Res; 2004 Dec; 1030(2):277-83. PubMed ID: 15571676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain.
    Chen CL; Broom DC; Liu Y; de Nooij JC; Li Z; Cen C; Samad OA; Jessell TM; Woolf CJ; Ma Q
    Neuron; 2006 Feb; 49(3):365-77. PubMed ID: 16446141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cathepsin L participates in dynorphin production in brain cortex, illustrated by protease gene knockout and expression.
    Minokadeh A; Funkelstein L; Toneff T; Hwang SR; Beinfeld M; Reinheckel T; Peters C; Zadina J; Hook V
    Mol Cell Neurosci; 2010 Jan; 43(1):98-107. PubMed ID: 19837164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the role of nociceptor-specific sodium channels in pain transmission using Nav1.8 and Nav1.9 knockout mice.
    Leo S; D'Hooge R; Meert T
    Behav Brain Res; 2010 Mar; 208(1):149-57. PubMed ID: 19931571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted high-resolution quadrupole-Orbitrap mass spectrometry analyses reveal a significant reduction of tachykinin and opioid neuropeptides level in PC1 and PC2 mutant mouse spinal cords.
    Saidi M; Beaudry F
    Neuropeptides; 2017 Oct; 65():37-44. PubMed ID: 28476408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thrombin receptor: An endogenous inhibitor of inflammatory pain, activating opioid pathways.
    Martin L; Augé C; Boué J; Buresi MC; Chapman K; Asfaha S; Andrade-Gordon P; Steinhoff M; Cenac N; Dietrich G; Vergnolle N
    Pain; 2009 Nov; 146(1-2):121-9. PubMed ID: 19674841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of cellular prion protein in the nociceptive response in mice.
    Meotti FC; Carqueja CL; Gadotti Vde M; Tasca CI; Walz R; Santos AR
    Brain Res; 2007 Jun; 1151():84-90. PubMed ID: 17433806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the tissue-specific processing of procholecystokinin in the brain and gut--a short review.
    Rehfeld JF; Bungaard JR; Friis-Hansen L; Goetze JP
    J Physiol Pharmacol; 2003 Dec; 54 Suppl 4():73-9. PubMed ID: 15075450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible involvement of supraspinal opioid and GABA receptors in CDP-choline-induced antinociception in acute pain models in rats.
    Hamurtekin E; Bagdas D; Gurun MS
    Neurosci Lett; 2007 Jun; 420(2):116-21. PubMed ID: 17531379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.