These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 16905650)
1. The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecular evolution. Weber AL; Pizzarello S Proc Natl Acad Sci U S A; 2006 Aug; 103(34):12713-7. PubMed ID: 16905650 [TBL] [Abstract][Full Text] [Related]
3. Asymmetric organocatalytic formation of protected and unprotected tetroses under potentially prebiotic conditions. Burroughs L; Clarke PA; Forintos H; Gilks JA; Hayes CJ; Vale ME; Wade W; Zbytniewski M Org Biomol Chem; 2012 Feb; 10(8):1565-70. PubMed ID: 22245755 [TBL] [Abstract][Full Text] [Related]
4. Stereoselective syntheses of pentose sugars under realistic prebiotic conditions. Pizzarello S; Weber AL Orig Life Evol Biosph; 2010 Feb; 40(1):3-10. PubMed ID: 19899000 [TBL] [Abstract][Full Text] [Related]
5. Prebiotic synthesis of simple sugars by an interstellar formose reaction. Jalbout AF Orig Life Evol Biosph; 2008 Dec; 38(6):489-97. PubMed ID: 18998238 [TBL] [Abstract][Full Text] [Related]
6. L-amino acids catalyze the formation of an excess of D-glyceraldehyde, and thus of other D sugars, under credible prebiotic conditions. Breslow R; Cheng ZL Proc Natl Acad Sci U S A; 2010 Mar; 107(13):5723-5. PubMed ID: 20231487 [TBL] [Abstract][Full Text] [Related]
7. Efficient asymmetric organocatalytic formation of erythrose and threose under aqueous conditions. Burroughs L; Vale ME; Gilks JA; Forintos H; Hayes CJ; Clarke PA Chem Commun (Camb); 2010 Jul; 46(26):4776-8. PubMed ID: 20485830 [TBL] [Abstract][Full Text] [Related]
8. Zinc-proline catalyzed pathway for the formation of sugars. Kofoed J; Machuqueiro M; Reymond JL; Darbre T Chem Commun (Camb); 2004 Jul; (13):1540-1. PubMed ID: 15216370 [TBL] [Abstract][Full Text] [Related]
9. On the prebiotic synthesis of D-sugars catalyzed by L-peptides: assessments from first-principles calculations. Cantillo D; Ávalos M; Babiano R; Cintas P; Jiménez JL; Palacios JC Chemistry; 2012 Jul; 18(28):8795-9. PubMed ID: 22689139 [TBL] [Abstract][Full Text] [Related]
10. The possible influence of L-histidine on the origin of the first peptides on the primordial Earth. Reiner H; Plankensteiner K; Fitz D; Rode BM Chem Biodivers; 2006 Jun; 3(6):611-21. PubMed ID: 17193295 [TBL] [Abstract][Full Text] [Related]
11. Prebiotic synthesis of histidine. Shen C; Yang L; Miller SL; Oro J J Mol Evol; 1990 Sep; 31(3):167-74. PubMed ID: 11536478 [TBL] [Abstract][Full Text] [Related]
12. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Saladino R; Carota E; Botta G; Kapralov M; Timoshenko GN; Rozanov AY; Krasavin E; Di Mauro E Proc Natl Acad Sci U S A; 2015 May; 112(21):E2746-55. PubMed ID: 25870268 [TBL] [Abstract][Full Text] [Related]
13. Catalytic Gels for a Prebiotically Relevant Asymmetric Aldol Reaction in Water: From Organocatalyst Design to Hydrogel Discovery and Back Again. Hawkins K; Patterson AK; Clarke PA; Smith DK J Am Chem Soc; 2020 Mar; 142(9):4379-4389. PubMed ID: 32023044 [TBL] [Abstract][Full Text] [Related]
14. Racemic beta-sheets as templates of relevance to the origin of homochirality of peptides: lessons from crystal chemistry. Weissbuch I; Illos RA; Bolbach G; Lahav M Acc Chem Res; 2009 Aug; 42(8):1128-40. PubMed ID: 19480407 [TBL] [Abstract][Full Text] [Related]
15. Beneficial effect of internal hydrogen bonding interactions on the beta-fragmentation of primary alkoxyl radicals. Two-step conversion of D-xylo- and D-ribofuranoses into L-threose and D-erythrose, respectively. Hernandez-García L; Quintero L; Sánchez M; Sartillo-Piscil F J Org Chem; 2007 Oct; 72(22):8196-201. PubMed ID: 17900138 [TBL] [Abstract][Full Text] [Related]
16. Peptides En Route from Prebiotic to Biotic Catalysis. Hlouchová K Acc Chem Res; 2024 Aug; 57(15):2027-2037. PubMed ID: 39016062 [TBL] [Abstract][Full Text] [Related]
17. Theoretical study of the mutarotation of erythrose and threose: acid catalysis. Azofra LM; Alkorta I; Elguero J Carbohydr Res; 2013 May; 372():1-8. PubMed ID: 23501397 [TBL] [Abstract][Full Text] [Related]
18. Kinetic analysis of artificial peptide self-replication. Part II: the heterochiral case. Islas JR; Pimienta V; Micheau JC; Buhse T Biophys Chem; 2003 Mar; 103(3):201-11. PubMed ID: 12727283 [TBL] [Abstract][Full Text] [Related]
19. The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates. Lambert JB; Gurusamy-Thangavelu SA; Ma K Science; 2010 Feb; 327(5968):984-6. PubMed ID: 20167782 [TBL] [Abstract][Full Text] [Related]
20. The structure and synthetic capabilities of a catalytic peptide formed by substrate-directed mechanism--implications to prebiotic catalysis. Fleminger G; Yaron T; Eisenstein M; Bar-Nun A Orig Life Evol Biosph; 2005 Aug; 35(4):369-82. PubMed ID: 16228649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]