BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 16905650)

  • 1. The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecular evolution.
    Weber AL; Pizzarello S
    Proc Natl Acad Sci U S A; 2006 Aug; 103(34):12713-7. PubMed ID: 16905650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prebiotic amino acids as asymmetric catalysts.
    Pizzarello S; Weber AL
    Science; 2004 Feb; 303(5661):1151. PubMed ID: 14976304
    [No Abstract]   [Full Text] [Related]  

  • 3. Asymmetric organocatalytic formation of protected and unprotected tetroses under potentially prebiotic conditions.
    Burroughs L; Clarke PA; Forintos H; Gilks JA; Hayes CJ; Vale ME; Wade W; Zbytniewski M
    Org Biomol Chem; 2012 Feb; 10(8):1565-70. PubMed ID: 22245755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselective syntheses of pentose sugars under realistic prebiotic conditions.
    Pizzarello S; Weber AL
    Orig Life Evol Biosph; 2010 Feb; 40(1):3-10. PubMed ID: 19899000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prebiotic synthesis of simple sugars by an interstellar formose reaction.
    Jalbout AF
    Orig Life Evol Biosph; 2008 Dec; 38(6):489-97. PubMed ID: 18998238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L-amino acids catalyze the formation of an excess of D-glyceraldehyde, and thus of other D sugars, under credible prebiotic conditions.
    Breslow R; Cheng ZL
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):5723-5. PubMed ID: 20231487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient asymmetric organocatalytic formation of erythrose and threose under aqueous conditions.
    Burroughs L; Vale ME; Gilks JA; Forintos H; Hayes CJ; Clarke PA
    Chem Commun (Camb); 2010 Jul; 46(26):4776-8. PubMed ID: 20485830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc-proline catalyzed pathway for the formation of sugars.
    Kofoed J; Machuqueiro M; Reymond JL; Darbre T
    Chem Commun (Camb); 2004 Jul; (13):1540-1. PubMed ID: 15216370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the prebiotic synthesis of D-sugars catalyzed by L-peptides: assessments from first-principles calculations.
    Cantillo D; Ávalos M; Babiano R; Cintas P; Jiménez JL; Palacios JC
    Chemistry; 2012 Jul; 18(28):8795-9. PubMed ID: 22689139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The possible influence of L-histidine on the origin of the first peptides on the primordial Earth.
    Reiner H; Plankensteiner K; Fitz D; Rode BM
    Chem Biodivers; 2006 Jun; 3(6):611-21. PubMed ID: 17193295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prebiotic synthesis of histidine.
    Shen C; Yang L; Miller SL; Oro J
    J Mol Evol; 1990 Sep; 31(3):167-74. PubMed ID: 11536478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation.
    Saladino R; Carota E; Botta G; Kapralov M; Timoshenko GN; Rozanov AY; Krasavin E; Di Mauro E
    Proc Natl Acad Sci U S A; 2015 May; 112(21):E2746-55. PubMed ID: 25870268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic Gels for a Prebiotically Relevant Asymmetric Aldol Reaction in Water: From Organocatalyst Design to Hydrogel Discovery and Back Again.
    Hawkins K; Patterson AK; Clarke PA; Smith DK
    J Am Chem Soc; 2020 Mar; 142(9):4379-4389. PubMed ID: 32023044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Racemic beta-sheets as templates of relevance to the origin of homochirality of peptides: lessons from crystal chemistry.
    Weissbuch I; Illos RA; Bolbach G; Lahav M
    Acc Chem Res; 2009 Aug; 42(8):1128-40. PubMed ID: 19480407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beneficial effect of internal hydrogen bonding interactions on the beta-fragmentation of primary alkoxyl radicals. Two-step conversion of D-xylo- and D-ribofuranoses into L-threose and D-erythrose, respectively.
    Hernandez-García L; Quintero L; Sánchez M; Sartillo-Piscil F
    J Org Chem; 2007 Oct; 72(22):8196-201. PubMed ID: 17900138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of the mutarotation of erythrose and threose: acid catalysis.
    Azofra LM; Alkorta I; Elguero J
    Carbohydr Res; 2013 May; 372():1-8. PubMed ID: 23501397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of artificial peptide self-replication. Part II: the heterochiral case.
    Islas JR; Pimienta V; Micheau JC; Buhse T
    Biophys Chem; 2003 Mar; 103(3):201-11. PubMed ID: 12727283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates.
    Lambert JB; Gurusamy-Thangavelu SA; Ma K
    Science; 2010 Feb; 327(5968):984-6. PubMed ID: 20167782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure and synthetic capabilities of a catalytic peptide formed by substrate-directed mechanism--implications to prebiotic catalysis.
    Fleminger G; Yaron T; Eisenstein M; Bar-Nun A
    Orig Life Evol Biosph; 2005 Aug; 35(4):369-82. PubMed ID: 16228649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of life. A simpler nucleic acid.
    Orgel L
    Science; 2000 Nov; 290(5495):1306-7. PubMed ID: 11185405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.