These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1690574)

  • 21. Essential arginyl residues in mitochondrial adenosine triphosphatase.
    Marcus F; Schuster SM; Lardy HA
    J Biol Chem; 1976 Mar; 251(6):1775-80. PubMed ID: 176162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenylglyoxal modification of cardiac myosin S-1. Evidence for essential arginine residues at the active site.
    Morkin E; Flink IL; Banerjee SK
    J Biol Chem; 1979 Dec; 254(24):12647-52. PubMed ID: 159307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparative study of essential arginine residues in Gramicidin S synthetase 2 and isoleucyl tRNA synthetase.
    Kanda M; Hori K; Miura S; Yamada Y; Saito Y
    J Biochem; 1982 Dec; 92(6):1951-7. PubMed ID: 6761339
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical modification of arginine residues of rat liver S-adenosylhomocysteinase.
    Takata Y; Fujioka M
    J Biol Chem; 1983 Jun; 258(12):7374-8. PubMed ID: 6863250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of phosphate and adenine nucleotides on the rate of labeling of functional groups at the catalytic site of F1-ATPase.
    Ting LP; Wang JH
    J Bioenerg Biomembr; 1980 Aug; 12(3-4):79-93. PubMed ID: 6452451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical modification of an arginine residue in the ATP-binding site of Ca2+ -transporting ATPase of sarcoplasmic reticulum by phenylglyoxal.
    Yamamoto H; Kawakita M
    Mol Cell Biochem; 1999 Jan; 190(1-2):169-77. PubMed ID: 10098984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inactivation of wheat-germ aspartate transcarbamoylase by the arginine-specific reagent phenylglyoxal.
    Cole SC; Yaghmaie PA; Butterworth PJ; Yon RJ
    Biochem J; 1986 Jan; 233(1):303-6. PubMed ID: 3954732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of essential arginine residue(s) for Mg-ATP binding of human argininosuccinate synthetase.
    Isashiki Y; Noda T; Kobayashi K; Sase M; Saheki T; Titani K
    Protein Seq Data Anal; 1989 Jul; 2(4):283-7. PubMed ID: 2788888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Essential arginine residues in isoprenylcysteine protein carboxyl methyltransferase.
    Boivin D; Lin W; Béliveau R
    Biochem Cell Biol; 1997; 75(1):63-9. PubMed ID: 9192075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for an essential arginine residue at the active site of Escherichia coli acetate kinase.
    Wong SS; Wong LJ
    Biochim Biophys Acta; 1981 Jul; 660(1):142-7. PubMed ID: 6268170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The presence of essential arginine residues at the NADPH-binding sites of beta-ketoacyl reductase and enoyl reductase domains of the multifunctional fatty acid synthetase of chicken liver.
    Vernon CM; Hsu RY
    Biochim Biophys Acta; 1984 Jul; 788(1):124-31. PubMed ID: 6378254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anion transport in red blood cells and arginine-specific reagents. Interaction between the substrate-binding site and the binding site of arginine-specific reagents.
    Zaki L; Julien T
    Biochim Biophys Acta; 1985 Sep; 818(3):325-32. PubMed ID: 4041441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the vacuolar ATPase activity of the crassulacean-acid-metabolism plant Kalanchoë daigremontiana. Receptor modulating.
    Smith JA; Uribe EG; Ball E; Heuer S; Lüttge U
    Eur J Biochem; 1984 Jun; 141(2):415-20. PubMed ID: 6234166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of essential arginine in bacterial peptidyl dipeptidase-4: arginine is not the anion binding site.
    Lanzillo JJ; Dasarathy Y; Fanburg BL
    Biochem Biophys Res Commun; 1989 Apr; 160(1):243-9. PubMed ID: 2653317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on inactivation of anion transport in human red blood cell membrane by reversibly and irreversibly acting arginine-specific reagents.
    Julien T; Zaki L
    J Membr Biol; 1988 Jun; 102(3):217-24. PubMed ID: 3172180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reaction of phenylglyoxal with chicken gizzard myosin.
    Bailin G
    Biochem Int; 1985 Aug; 11(2):161-70. PubMed ID: 2932113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arginyl residues are involved in acyl-CoA binding to the elongase from etiolated leek seedlings.
    Santarelli X; Chevalier S; Cassagne C; Lessire R
    Biochim Biophys Acta; 1998 Apr; 1391(3):357-66. PubMed ID: 9555095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. UDP-glucose 4-epimerase from Saccharomyces fragilis. Presence of an essential arginine residue at the substrate-binding site of the enzyme.
    Mukherji S; Bhaduri A
    J Biol Chem; 1986 Apr; 261(10):4519-24. PubMed ID: 3957906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae.
    Malebrán LP; Cardemil E
    Biochim Biophys Acta; 1987 Oct; 915(3):385-92. PubMed ID: 3307926
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of an arginyl residue in the catalytic activity of myosin heads.
    Mornet D; Pantel P; Audemard E; Kassab R
    Eur J Biochem; 1979 Oct; 100(2):421-31. PubMed ID: 41710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.