BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 16906790)

  • 1. Photodynamic activity of substituted zinc trisulfophthalocyanines: role of plasma membrane damage.
    Cauchon N; Nader M; Bkaily G; van Lier JE; Hunting D
    Photochem Photobiol; 2006; 82(6):1712-20. PubMed ID: 16906790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-photodynamic activity relationships of substituted zinc trisulfophthalocyanines.
    Cauchon N; Tian H; Langlois R; La Madeleine C; Martin S; Ali H; Hunting D; van Lier JE
    Bioconjug Chem; 2005; 16(1):80-9. PubMed ID: 15656578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosensitization with zinc (II) phthalocyanine as a switch in the decision between apoptosis and necrosis.
    Fabris C; Valduga G; Miotto G; Borsetto L; Jori G; Garbisa S; Reddi E
    Cancer Res; 2001 Oct; 61(20):7495-500. PubMed ID: 11606385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity relationships of mono-substituted trisulfonated porphyrazines for the photodynamic therapy (PDT) of cancer.
    Cauchon N; Ali H; Hasséssian HM; van Lier JE
    Photochem Photobiol Sci; 2010 Mar; 9(3):331-41. PubMed ID: 20221459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. P-glycoprotein does not reduce substrate concentration from the extracellular leaflet of the plasma membrane in living cells.
    Chen Y; Pant AC; Simon SM
    Cancer Res; 2001 Nov; 61(21):7763-9. PubMed ID: 11691790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Y1068 phosphorylation is the most sensitive target of disulfonated tetraphenylporphyrin-based photodynamic therapy on epidermal growth factor receptor.
    Weyergang A; Selbo PK; Berg K
    Biochem Pharmacol; 2007 Jul; 74(2):226-35. PubMed ID: 17531956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation in photodynamic efficacy during the cellular uptake of two phthalocyanine photosensitizers.
    He J; Horng MF; Deahl JT; Oleinick NL; Evans HH
    Photochem Photobiol; 1998 Jun; 67(6):720-8. PubMed ID: 9648537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular inactivation and antitumor efficacy of a new zinc phthalocyanine with potential use in photodynamic therapy.
    Vittar NB; Prucca CG; Strassert C; Awruch J; Rivarola VA
    Int J Biochem Cell Biol; 2008; 40(10):2192-205. PubMed ID: 18440266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological activities of phthalocyanines. XVII histopathologic evidence for different mechanisms of EMT-6 tumor necrosis induced by photodynamic therapy with disulfonated aluminum phthalocyanine or photofrin.
    Margaron P; Madarnas P; Quellet R; Van Lier JE
    Anticancer Res; 1996; 16(2):613-20. PubMed ID: 8687105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Photodynamic therapy of zinc sulfonated phthalocyanine on murine transplanted tumors, its tissue distribution, and damaging effect on DNA of cancer cell].
    Fu NW; Guo R; Yan LX; Huang L; Xu HJ
    Zhongguo Yao Li Xue Bao; 1991 Sep; 12(5):457-61. PubMed ID: 1819903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of zinc insertion and hydrophobicity on the membrane interactions and PDT activity of porphyrin photosensitizers.
    Pavani C; Uchoa AF; Oliveira CS; Iamamoto Y; Baptista MS
    Photochem Photobiol Sci; 2009 Feb; 8(2):233-40. PubMed ID: 19247516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase I clinical trial of the use of zinc phthalocyanine tetrasulfonate as a photosensitizer for photodynamic therapy in dogs.
    Borgatti-Jeffreys A; Hooser SB; Miller MA; Lucroy MD
    Am J Vet Res; 2007 Apr; 68(4):399-404. PubMed ID: 17397295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sulfonation on the cell and tissue distribution of the photosensitizer aluminum phthalocyanine.
    Chan WS; Marshall JF; Svensen R; Bedwell J; Hart IR
    Cancer Res; 1990 Aug; 50(15):4533-8. PubMed ID: 2369730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodynamic properties of amphiphilic derivatives of aluminum tetrasulfophthalocyanine.
    Allen CM; Langlois R; Sharman WM; La Madeleine C; Van Lier JE
    Photochem Photobiol; 2002 Aug; 76(2):208-16. PubMed ID: 12194219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caspase-2: a possible trigger of apoptosis induced in A-549 tumor cells by ZnPc photodynamic treatment.
    Cristóbal J; Stockert JC; Villanueva A; Rello-Varona S; Juarranz A; Cañete M
    Int J Oncol; 2006 May; 28(5):1057-63. PubMed ID: 16596221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodynamic therapy of malignant glioma with hypericin: comprehensive in vitro study in human glioblastoma cell lines.
    Ritz R; Wein HT; Dietz K; Schenk M; Roser F; Tatagiba M; Strauss WS
    Int J Oncol; 2007 Mar; 30(3):659-67. PubMed ID: 17273767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural alterations induced by photodynamic action of hematoporphyrin derivative (HpD) in plasma membrane of glioblastoma (U-87MG) cells: time dependent fluorescence spectroscopic study.
    Joshi K; Joshi PG; Joshi NB
    Indian J Biochem Biophys; 1995 Aug; 32(4):200-6. PubMed ID: 8655188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective photosensitizer delivery into plasma membrane for effective photodynamic therapy.
    Kim J; Santos OA; Park JH
    J Control Release; 2014 Oct; 191():98-104. PubMed ID: 24892975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photodynamic and sonodynamic treatment by phthalocyanine on cancer cell lines.
    Kolarova H; Tomankova K; Bajgar R; Kolar P; Kubinek R
    Ultrasound Med Biol; 2009 Aug; 35(8):1397-404. PubMed ID: 19515482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Preferential tumoral phototoxicity of chloroaluminum phthalocyanine in photodynamic therapy of human leukemic cells].
    Daziano JP; Humeau L; Chabannon C; Mannoni P; Julliard M
    C R Seances Soc Biol Fil; 1995; 189(3):407-17. PubMed ID: 8521089
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.