These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 16906883)
21. A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins. Plank MJ; Sleeman BD; Jones PF J Theor Biol; 2004 Aug; 229(4):435-54. PubMed ID: 15246783 [TBL] [Abstract][Full Text] [Related]
22. Dynamical model for assessment of anti-angiogenic therapy of cancer. Mukherjee A; Majumder D Mol Biosyst; 2010 Jun; 6(6):1047-55. PubMed ID: 20358121 [TBL] [Abstract][Full Text] [Related]
25. Potential therapeutic implications of intracrine angiogenesis. Re RN; Cook JL Med Hypotheses; 2007; 69(2):414-21. PubMed ID: 17320306 [TBL] [Abstract][Full Text] [Related]
26. Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). d'Onofrio A; Gandolfi A Math Biosci; 2004 Oct; 191(2):159-84. PubMed ID: 15363652 [TBL] [Abstract][Full Text] [Related]
27. Inhibition of vascular endothelial growth factor-associated tyrosine kinase activity with SU5416 blocks sprouting in the microvascular endothelial cell spheroid model of angiogenesis. Haspel HC; Scicli GM; McMahon G; Scicli AG Microvasc Res; 2002 May; 63(3):304-15. PubMed ID: 11969307 [TBL] [Abstract][Full Text] [Related]
29. Angiogenesis as a target for tumor treatment. Gastl G; Hermann T; Steurer M; Zmija J; Gunsilius E; Unger C; Kraft A Oncology; 1997; 54(3):177-84. PubMed ID: 9143396 [TBL] [Abstract][Full Text] [Related]
30. [Investigation of the Influence of Angiogenesis on Tumor Growth with the Use of a Mathematical Model]. Kolobov AV; Kuznetsov MB Biofizika; 2015; 60(3):555-63. PubMed ID: 26349221 [TBL] [Abstract][Full Text] [Related]
31. A 2D mathematical model for tumor angiogenesis: The roles of certain cells in the extra cellular matrix. Pamuk S; Çay İ; Sazcı A Math Biosci; 2018 Dec; 306():32-48. PubMed ID: 30393207 [TBL] [Abstract][Full Text] [Related]
32. Engineered human tumor xenografts with functional human vascular networks. Alonso-Camino V; Santos-Valle P; Ispizua MC; Sanz L; Alvarez-Vallina L Microvasc Res; 2011 Jan; 81(1):18-25. PubMed ID: 20934439 [TBL] [Abstract][Full Text] [Related]
33. Targeting tumor vasculature: reality or a dream? Satchi-Fainaro R J Drug Target; 2002 Nov; 10(7):529-33. PubMed ID: 12683719 [No Abstract] [Full Text] [Related]
34. Continuous and discrete mathematical models of tumor-induced angiogenesis. Anderson AR; Chaplain MA Bull Math Biol; 1998 Sep; 60(5):857-99. PubMed ID: 9739618 [TBL] [Abstract][Full Text] [Related]
35. Use of tumor-activated hepatic stellate cell as a target for the preclinical testing of anti-angiogenic drugs against hepatic tumor development. Olaso E; Vidal-Vanaclocha F Methods Mol Med; 2003; 85():79-86. PubMed ID: 12710199 [No Abstract] [Full Text] [Related]
36. Anti-angiogenic therapies in cancer: achievements and open questions. Ruegg C; Mutter N Bull Cancer; 2007 Sep; 94(9):753-62. PubMed ID: 17878094 [TBL] [Abstract][Full Text] [Related]
37. Regulation of tumor angiogenesis by fastatin, the fourth FAS1 domain of betaig-h3, via alphavbeta3 integrin. Nam JO; Jeong HW; Lee BH; Park RW; Kim IS Cancer Res; 2005 May; 65(10):4153-61. PubMed ID: 15899806 [TBL] [Abstract][Full Text] [Related]
38. Roles of main pro- and anti-angiogenic factors in tumor angiogenesis. Huang Z; Bao SD World J Gastroenterol; 2004 Feb; 10(4):463-70. PubMed ID: 14966899 [TBL] [Abstract][Full Text] [Related]