These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 16906910)

  • 1. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models.
    Chavanis PH; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066103. PubMed ID: 16906910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. II. Inertial models.
    Chavanis PH; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066104. PubMed ID: 16906911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-gravitating Brownian systems and bacterial populations with two or more types of particles.
    Sopik J; Sire C; Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026105. PubMed ID: 16196642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions.
    Chavanis PH; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016116. PubMed ID: 14995676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions.
    Sire C; Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046133. PubMed ID: 12443285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of the Bose-Einstein condensation: analogy with the collapse dynamics of a classical self-gravitating Brownian gas.
    Sopik J; Sire C; Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011112. PubMed ID: 16907065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postcollapse dynamics of self-gravitating Brownian particles and bacterial populations.
    Sire C; Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066109. PubMed ID: 15244669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical dynamics of self-gravitating Langevin particles and bacterial populations.
    Sire C; Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061111. PubMed ID: 19256806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exact analytical solution of the collapse of self-gravitating Brownian particles and bacterial populations at zero temperature.
    Chavanis PH; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031131. PubMed ID: 21517478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instability of a uniformly collapsing cloud of classical and quantum self-gravitating Brownian particles.
    Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031101. PubMed ID: 22060322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of self-gravitating systems.
    Chavanis PH; Rosier C; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036105. PubMed ID: 12366182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimate of blow-up and relaxation time for self-gravitating Brownian particles and bacterial populations.
    Chavanis PH; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026115. PubMed ID: 15447553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local virial relation for self-gravitating system.
    Iguchi O; Sota Y; Nakamichi A; Morikawa M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046112. PubMed ID: 16711883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061201. PubMed ID: 16485937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random transitions described by the stochastic Smoluchowski-Poisson system and by the stochastic Keller-Segel model.
    Chavanis PH; Delfini L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032139. PubMed ID: 24730821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical mechanics of the self-gravitating gas with two or more kinds of particles.
    de Vega HJ; Siebert JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016112. PubMed ID: 12241431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brownian motion in inhomogeneous suspensions.
    Yang M; Ripoll M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062110. PubMed ID: 23848630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translational and rotational dynamics of colloidal particles in suspension: effect of shear.
    Hernández-Contreras M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022317. PubMed ID: 24032842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion.
    Bodrova AS; Chechkin AV; Cherstvy AG; Safdari H; Sokolov IM; Metzler R
    Sci Rep; 2016 Jul; 6():30520. PubMed ID: 27462008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate concentration dependence of the diffusion-controlled steady-state rate constant.
    Dzubiella J; McCammon JA
    J Chem Phys; 2005 May; 122(18):184902. PubMed ID: 15918760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.