These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 16906968)
1. Fermi acceleration on the annular billiard. de Carvalho RE; Souza FC; Leonel ED Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066229. PubMed ID: 16906968 [TBL] [Abstract][Full Text] [Related]
2. Suppressing Fermi acceleration in a driven elliptical billiard. Leonel ED; Bunimovich LA Phys Rev Lett; 2010 Jun; 104(22):224101. PubMed ID: 20867173 [TBL] [Abstract][Full Text] [Related]
3. Fermi acceleration and scaling properties of a time dependent oval billiard. Leonel ED; Oliveira DF; Loskutov A Chaos; 2009 Sep; 19(3):033142. PubMed ID: 19792022 [TBL] [Abstract][Full Text] [Related]
4. Acceleration in a nonplanar time-dependent billiard. Raeisi S; Eslami P Phys Rev E; 2016 Aug; 94(2-1):022217. PubMed ID: 27627308 [TBL] [Abstract][Full Text] [Related]
5. Scaling investigation of Fermi acceleration on a dissipative bouncer model. Livorati AL; Ladeira DG; Leonel ED Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056205. PubMed ID: 19113198 [TBL] [Abstract][Full Text] [Related]
6. Fermi acceleration in time-dependent rectangular billiards due to multiple passages through resonances. Itin AP; Neishtadt AI Chaos; 2012 Jun; 22(2):026119. PubMed ID: 22757578 [TBL] [Abstract][Full Text] [Related]
7. Tunable Fermi acceleration in a nondissipative driven magnetic billiard. Castaldi B; Egydio de Carvalho R; Vieira Abud C; Mijolaro AP Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012916. PubMed ID: 24580306 [TBL] [Abstract][Full Text] [Related]
8. Universal energy diffusion in a quivering billiard. Demers J; Jarzynski C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042911. PubMed ID: 26565308 [TBL] [Abstract][Full Text] [Related]
9. Decay of energy and suppression of Fermi acceleration in a dissipative driven stadium-like billiard. Livorati AL; Caldas IL; Leonel ED Chaos; 2012 Jun; 22(2):026122. PubMed ID: 22757581 [TBL] [Abstract][Full Text] [Related]
10. Fermi acceleration in chaotic shape-preserving billiards. Batistić B Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022912. PubMed ID: 25353550 [TBL] [Abstract][Full Text] [Related]
11. Competition between suppression and production of Fermi acceleration. Ladeira DG; Leonel ED Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036216. PubMed ID: 20365841 [TBL] [Abstract][Full Text] [Related]
12. Tunable fermi acceleration in the driven elliptical billiard. Lenz F; Diakonos FK; Schmelcher P Phys Rev Lett; 2008 Jan; 100(1):014103. PubMed ID: 18232773 [TBL] [Abstract][Full Text] [Related]
13. Stickiness in a bouncer model: A slowing mechanism for Fermi acceleration. Livorati AL; Kroetz T; Dettmann CP; Caldas IL; Leonel ED Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036203. PubMed ID: 23030993 [TBL] [Abstract][Full Text] [Related]
14. Suppressing Fermi acceleration in two-dimensional driven billiards. Leonel ED; Bunimovich LA Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016202. PubMed ID: 20866702 [TBL] [Abstract][Full Text] [Related]
15. One-dimensional Fermi accelerator model with moving wall described by a nonlinear van der Pol oscillator. Botari T; Leonel ED Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012904. PubMed ID: 23410401 [TBL] [Abstract][Full Text] [Related]
16. Exponential Fermi acceleration in general time-dependent billiards. Batistić B Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032909. PubMed ID: 25314506 [TBL] [Abstract][Full Text] [Related]
17. Fermi resonance in dynamical tunneling in a chaotic billiard. Yi CH; Kim JH; Yu HH; Lee JW; Kim CM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022916. PubMed ID: 26382485 [TBL] [Abstract][Full Text] [Related]
18. In-flight and collisional dissipation as a mechanism to suppress Fermi acceleration in a breathing Lorentz gas. Oliveira DF; Leonel ED Chaos; 2012 Jun; 22(2):026123. PubMed ID: 22757582 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of classical particles in oval or elliptic billiards with a dispersing mechanism. da Costa DR; Dettmann CP; de Oliveira JA; Leonel ED Chaos; 2015 Mar; 25(3):033109. PubMed ID: 25833431 [TBL] [Abstract][Full Text] [Related]
20. Annular billiard dynamics in a circularly polarized strong laser field. Kamor A; Mauger F; Chandre C; Uzer T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016204. PubMed ID: 22400640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]