These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16907092)

  • 1. Cooperative behavior and pattern formation in mixtures of driven and nondriven colloidal assemblies.
    Reichhardt C; Olson Reichhardt CJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011403. PubMed ID: 16907092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle Monte Carlo simulation of string-like colloidal assembly in two and three dimensions.
    Norizoe Y; Kawakatsu T
    J Chem Phys; 2012 Jul; 137(2):024904. PubMed ID: 22803559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positive and negative drag, dynamic phases, and commensurability in coupled one-dimensional channels of particles with Yukawa interactions.
    Reichhardt C; Bairnsfather C; Reichhardt CJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061404. PubMed ID: 21797361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic regimes for driven colloidal particles on a periodic substrate at commensurate and incommensurate fillings.
    McDermott D; Amelang J; Reichhardt CJ; Reichhardt C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062301. PubMed ID: 24483438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal systems in three-dimensional microchannels: lattice control via channel width and external force.
    Schwierz N; Nielaba P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031401. PubMed ID: 21230071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Change in collective motion of colloidal particles driven by an optical vortex with driving force and spatial confinement.
    Saito K; Okubo S; Kimura Y
    Soft Matter; 2018 Jul; 14(29):6037-6042. PubMed ID: 29978882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic phases, clustering, and chain formation for driven disk systems in the presence of quenched disorder.
    Yang Y; McDermott D; Reichhardt CJO; Reichhardt C
    Phys Rev E; 2017 Apr; 95(4-1):042902. PubMed ID: 28505834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pattern Formation in Binary Colloidal Assemblies: Hidden Symmetries in a Kaleidoscope of Structures.
    Lotito V; Zambelli T
    Langmuir; 2018 Jul; 34(26):7827-7843. PubMed ID: 29886749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-dimensional cluster growth and branching gels in colloidal systems with short-range depletion attraction and screened electrostatic repulsion.
    Sciortino F; Tartaglia P; Zaccarelli E
    J Phys Chem B; 2005 Nov; 109(46):21942-53. PubMed ID: 16853852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statics and dynamics of Yukawa cluster crystals on ordered substrates.
    Reichhardt C; Olson Reichhardt CJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051401. PubMed ID: 23004755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic assembly route to colloidal responsive photonic nanostructures.
    He L; Wang M; Ge J; Yin Y
    Acc Chem Res; 2012 Sep; 45(9):1431-40. PubMed ID: 22578015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluctuations, jamming, and yielding for a driven probe particle in disordered disk assemblies.
    Olson Reichhardt CJ; Reichhardt C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051306. PubMed ID: 21230472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interacting particles in a periodically moving potential: traveling wave and transport.
    Chatterjee R; Chatterjee S; Pradhan P; Manna SS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022138. PubMed ID: 25353453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratcheting of driven attracting colloidal particles: temporal density oscillations and current multiplicity.
    Pototsky A; Archer AJ; Savel'ev SE; Thiele U; Marchesoni F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061401. PubMed ID: 21797358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal assembly on magnetically vibrated stripes.
    Tierno P; Fischer TM; Johansen TH; Sagués F
    Phys Rev Lett; 2008 Apr; 100(14):148304. PubMed ID: 18518078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attraction-driven disorder in a hard-core colloidal monolayer.
    Huerta A; Naumis GG; Wasan DT; Henderson D; Trokhymchuk A
    J Chem Phys; 2004 Jan; 120(3):1506-10. PubMed ID: 15268276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the motion of interacting particles: homogeneous systems and binary mixtures.
    Savel'ev S; Nori F
    Chaos; 2005 Jun; 15(2):26112. PubMed ID: 16035914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hydrodynamic interactions in binary colloidal mixtures driven oppositely by oscillatory external fields.
    Wysocki A; Löwen H
    J Phys Condens Matter; 2011 Jul; 23(28):284117. PubMed ID: 21709336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective stringlike motion of semiflexible filamentous particles in columnar liquid crystalline phases.
    Naderi S; van der Schoot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032307. PubMed ID: 24125268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of mobility in an interacting colloidal system under feedback control.
    Gernert R; Klapp SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022132. PubMed ID: 26382369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.