These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16907179)

  • 1. Characterization of the domain chaos convection state by the largest Lyapunov exponent.
    Jayaraman A; Scheel JD; Greenside HS; Fischer PF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016209. PubMed ID: 16907179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring spiral defect chaos in generalized Swift-Hohenberg models with mean flow.
    Karimi A; Huang ZF; Paul MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046215. PubMed ID: 22181253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the centrifugal force on domain chaos in Rayleigh-Bénard convection.
    Becker N; Scheel JD; Cross MC; Ahlers G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066309. PubMed ID: 16906978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying spatiotemporal chaos in Rayleigh-Bénard convection.
    Karimi A; Paul MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046201. PubMed ID: 22680550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced tracer transport by the spiral defect chaos state of a convecting fluid.
    Chiam KH; Cross MC; Greenside HS; Fischer PF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036205. PubMed ID: 15903544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling laws for rotating Rayleigh-Bénard convection.
    Scheel JD; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056315. PubMed ID: 16383753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defect chaos and bursts: hexagonal rotating convection and the complex Ginzburg-Landau equation.
    Madruga S; Riecke H; Pesch W
    Phys Rev Lett; 2006 Feb; 96(7):074501. PubMed ID: 16606097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Front propagation in a chaotic flow field.
    Mehrvarzi CO; Paul MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012905. PubMed ID: 25122358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive chaos in Rayleigh-Bénard convection.
    Paul MR; Einarsson MI; Fischer PF; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):045203. PubMed ID: 17500952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lyapunov exponents for small aspect ratio Rayleigh-Bénard convection.
    Scheel JD; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066301. PubMed ID: 17280142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triggering and enhancing chaos with a prescribed target Lyapunov exponent using optimized perturbations of minimum power.
    Soong CY; Huang WT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036206. PubMed ID: 17500768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Square patterns in rotating Rayleigh-Bénard convection.
    Sánchez-Alvarez JJ; Serre E; del Arco EC; Busse FH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036307. PubMed ID: 16241571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal scaling of Lyapunov-exponent fluctuations in space-time chaos.
    Pazó D; López JM; Politi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062909. PubMed ID: 23848750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hexagons and spiral defect chaos in non-Boussinesq convection at low Prandtl numbers.
    Madruga S; Riecke H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026210. PubMed ID: 17358408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized Lyapunov exponent as a unified characterization of dynamical instabilities.
    Akimoto T; Nakagawa M; Shinkai S; Aizawa Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012926. PubMed ID: 25679700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal dynamics near the onset of convection for binary mixtures in cylindrical containers.
    Mercader I; Alonso A; Batiste O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036313. PubMed ID: 18517517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of extensive spatiotemporal chaos in Rayleigh-Benard convection.
    Egolf DA; Melnikov IV; Pesch W; Ecke RE
    Nature; 2000 Apr; 404(6779):733-6. PubMed ID: 10783880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lyapunov exponent diagrams of a 4-dimensional Chua system.
    Stegemann C; Albuquerque HA; Rubinger RM; Rech PC
    Chaos; 2011 Sep; 21(3):033105. PubMed ID: 21974640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasipotential approach to critical scaling in noise-induced chaos.
    Tél T; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056208. PubMed ID: 20866308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of chaos based on a shell model.
    Yagi M; Itoh SI; Itoh K; Fukuyama A
    Chaos; 1999 Jun; 9(2):393-402. PubMed ID: 12779837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.