These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 16907208)

  • 1. Self-trapped spatiotemporal necklace-ring solitons in the Ginzburg-Landau equation.
    He YJ; Fan HH; Dong JW; Wang HZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016611. PubMed ID: 16907208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Necklace-ring vector solitons.
    Desyatnikov AS; Kivshar YS
    Phys Rev Lett; 2001 Jul; 87(3):033901. PubMed ID: 11461557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Annularly and radially phase-modulated spatiotemporal necklace-ring patterns in the Ginzburg-Landau and Swift-Hohenberg equations.
    Liu B; He YJ; Qiu ZR; Wang HZ
    Opt Express; 2009 Jul; 17(15):12203-9. PubMed ID: 19654622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bright-Dark and Multi Solitons Solutions of (3 + 1)-Dimensional Cubic-Quintic Complex Ginzburg-Landau Dynamical Equation with Applications and Stability.
    Yue C; Lu D; Arshad M; Nasreen N; Qian X
    Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of polygonal soliton clusters and fundamental solitons in dissipative systems by necklace-ring beams with radial-azimuthal phase modulation.
    He Y; Mihalache D; Malomed BA; Qiu Y; Chen Z; Li Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066206. PubMed ID: 23005195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fusion of necklace-ring patterns into vortex and fundamental solitons in dissipative media.
    He YJ; Malomed BA; Wang HZ
    Opt Express; 2007 Dec; 15(26):17502-8. PubMed ID: 19551043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable vortex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation.
    Mihalache D; Mazilu D; Lederer F; Kartashov YV; Crasovan LC; Torner L; Malomed BA
    Phys Rev Lett; 2006 Aug; 97(7):073904. PubMed ID: 17026230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal dissipative solitons in two-dimensional photonic lattices.
    Mihalache D; Mazilu D; Lederer F; Kivshar YS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056602. PubMed ID: 19113228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation.
    Kalashnikov VL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046606. PubMed ID: 19905470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metastable soliton necklaces supported by fractional diffraction and competing nonlinearities.
    Li P; Malomed BA; Mihalache D
    Opt Express; 2020 Nov; 28(23):34472-34488. PubMed ID: 33182916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable vortex solitons in the two-dimensional Ginzburg-Landau equation.
    Crasovan LC; Malomed BA; Mihalache D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016605. PubMed ID: 11304376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal optical solitons in nonlinear dissipative media: from stationary light bullets to pulsating complexes.
    Akhmediev N; Soto-Crespo JM; Grelu P
    Chaos; 2007 Sep; 17(3):037112. PubMed ID: 17903019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg-Landau equations with a linear potential.
    He YJ; Malomed BA; Mihalache D; Liu B; Huang HC; Yang H; Wang HZ
    Opt Lett; 2009 Oct; 34(19):2976-8. PubMed ID: 19794787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of phase on collision between vortex solitons in three-dimensional cubic-quintic complex Ginzburg-Landau equation.
    Liu B; Liu YF; He XD
    Opt Express; 2014 Oct; 22(21):26203-11. PubMed ID: 25401652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation instability in nonlinear metamaterials modeled by a cubic-quintic complex Ginzburg-Landau equation beyond the slowly varying envelope approximation.
    Megne LT; Tabi CB; Kofane TC
    Phys Rev E; 2020 Oct; 102(4-1):042207. PubMed ID: 33212598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous Diffusion of Dissipative Solitons in the Cubic-Quintic Complex Ginzburg-Landau Equation in Two Spatial Dimensions.
    Cisternas J; Descalzi O; Albers T; Radons G
    Phys Rev Lett; 2016 May; 116(20):203901. PubMed ID: 27258868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collisions between counter-rotating solitary vortices in the three-dimensional Ginzburg-Landau equation.
    Mihalache D; Mazilu D; Lederer F; Leblond H; Malomed BA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056601. PubMed ID: 19113227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integer and fractional angular momentum borne on self-trapped necklace-ring beams.
    Soljacić M; Segev M
    Phys Rev Lett; 2001 Jan; 86(3):420-3. PubMed ID: 11177845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase controlling of collisions between solitons in the two-dimensional complex Ginzburg-Landau equation without viscosity.
    Liu B; He XD; Li SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056607. PubMed ID: 22181536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust soliton clusters in media with competing cubic and quintic nonlinearities.
    Mihalache D; Mazilu D; Crasovan LC; Malomed BA; Lederer F; Torner L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046612. PubMed ID: 14683070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.