These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16907244)

  • 1. Resonance pacemakers in excitable media.
    Chigwada TR; Parmananda P; Showalter K
    Phys Rev Lett; 2006 Jun; 96(24):244101. PubMed ID: 16907244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and evolution of scroll waves in photosensitive excitable media.
    Amemiya T; Kettunen P; Kadar S; Yamaguchi T; Showalter K
    Chaos; 1998 Dec; 8(4):872-878. PubMed ID: 12779794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. External forcing of spiral waves.
    Zykov VS; Steinbock O; Muller SC
    Chaos; 1994 Sep; 4(3):509-518. PubMed ID: 12780127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density wave propagation of a wave train in a closed excitable medium.
    Suematsu NJ; Sato T; Motoike IN; Kashima K; Nakata S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046203. PubMed ID: 22181241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance induced pacemakers: a new class of organizing centers for wave propagation in excitable media.
    Parmananda P; Mahara H; Amemiya T; Yamaguchi T
    Phys Rev Lett; 2001 Dec; 87(23):238302. PubMed ID: 11736480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survival versus collapse: abrupt drop of excitability kills the traveling pulse, while gradual change results in adaptation.
    Tanaka M; Nagahara H; Kitahata H; Krinsky V; Agladze K; Yoshikawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016205. PubMed ID: 17677541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave propagation in subexcitable media with periodically modulated excitability.
    Sendiña-Nadal I; Mihaliuk E; Wang J; Pérez-Muñuzuri V; Showalter K
    Phys Rev Lett; 2001 Feb; 86(8):1646-9. PubMed ID: 11290214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instability of the Homogeneous Distribution of Chemical Waves in the Belousov-Zhabotinsky Reaction.
    Suematsu NJ; Nakata S
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regular wave propagation out of noise in chemical active media.
    Alonso S; Sendiña-Nadal I; Pérez-Muñuzuri V; Sancho JM; Sagués F
    Phys Rev Lett; 2001 Aug; 87(7):078302. PubMed ID: 11497926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave instability induced by nonlocal spatial coupling in a model of the light-sensitive Belousov-Zhabotinsky reaction.
    Nicola EM; Bär M; Engel H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066225. PubMed ID: 16906964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical-wave dynamics in a vertically oscillating fluid layer.
    Fernández-García G; Roncaglia DI; Pérez-Villar V; Muñuzuri AP; Pérez-Muñuzuri V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026204. PubMed ID: 18352100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of spiral formation in heterogeneous discretized excitable media.
    Kinoshita S; Iwamoto M; Tateishi K; Suematsu NJ; Ueyama D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062815. PubMed ID: 23848737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unidirectional mechanism for reentrant activity generation in excitable media.
    Sendiña-Nadal I; de Castro M; Sagués F; Gómez-Gesteira M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016215. PubMed ID: 12241469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodic forcing and feedback control of nonlinear lumped oscillators and meandering spiral waves.
    Zykov VS; Bordiougov G; Brandtstädter H; Gerdes I; Engel H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016214. PubMed ID: 12935232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition from traveling to standing waves in the 4:1 resonant Belousov-Zhabotinsky reaction.
    Marts B; Lin AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026211. PubMed ID: 18352107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel technique to initiate and investigate scroll waves in thin layers of the photosensitive Belousov-Zhabotinsky reaction.
    Azhand A; Buchholz R; Totz JF; Engel H
    Eur Phys J E Soft Matter; 2016 Jun; 39(6):61. PubMed ID: 27329535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robustness of free and pinned spiral waves against breakup by electrical forcing in excitable chemical media.
    Phantu M; Sutthiopad M; Luengviriya J; Müller SC; Luengviriya C
    Phys Rev E; 2017 Apr; 95(4-1):042214. PubMed ID: 28505820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical wave propagation preserved on an inhibitory field in the ruthenium-catalyzed Belousov-Zhabotinsky reaction.
    Nakata S; Ezaki T; Ikura YS; Kitahata H
    J Phys Chem A; 2013 Oct; 117(41):10615-8. PubMed ID: 24044665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spiral defect drift in the wave fields of multiple excitation patterns.
    Dutta S; Steinbock O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056213. PubMed ID: 21728636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spiral breakup induced by an electric current in a Belousov-Zhabotinsky medium.
    Taboada JJ; Munuzuri AP; Perez-Munuzuri V; Gomez-Gesteira M; Perez-Villar V
    Chaos; 1994 Sep; 4(3):519-524. PubMed ID: 12780128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.