These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

612 related articles for article (PubMed ID: 16907271)

  • 1. Phenomenological model of protected behavior in the pseudogap state of underdoped cuprate superconductors.
    Barzykin V; Pines D
    Phys Rev Lett; 2006 Jun; 96(24):247002. PubMed ID: 16907271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composite-fermion theory for pseudogap, Fermi arc, hole pocket, and non-Fermi liquid of underdoped cuprate superconductors.
    Yamaji Y; Imada M
    Phys Rev Lett; 2011 Jan; 106(1):016404. PubMed ID: 21231759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlayer penetration depth in the pseudogap phase of cuprate superconductors.
    Carbotte JP; Schachinger E
    J Phys Condens Matter; 2013 Apr; 25(16):165702. PubMed ID: 23553656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructed Fermi surface of underdoped Bi2Sr2CaCu2O(8+δ) cuprate superconductors.
    Yang HB; Rameau JD; Pan ZH; Gu GD; Johnson PD; Claus H; Hinks DG; Kidd TE
    Phys Rev Lett; 2011 Jul; 107(4):047003. PubMed ID: 21867032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic fingerprint of phase-incoherent superconductivity in the cuprate pseudogap state [corrected].
    Lee J; Fujita K; Schmidt AR; Kim CK; Eisaki H; Uchida S; Davis JC
    Science; 2009 Aug; 325(5944):1099-103. PubMed ID: 19713522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenomenological description of the two energy scales in underdoped cuprate superconductors.
    Valenzuela B; Bascones E
    Phys Rev Lett; 2007 Jun; 98(22):227002. PubMed ID: 17677872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous weak magnetism in superconducting YBa2Cu3O6+x.
    Sonier JE; Brewer JH; Kiefl RF; Miller RI; Morris GD; Stronach CE; Gardner JS; Dunsiger SR; Bonn DA; Hardy WN; Liang R; Heffner RH
    Science; 2001 Jun; 292(5522):1692-5. PubMed ID: 11387468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delocalized fermions in underdoped cuprate superconductors.
    Sutherland M; Li SY; Hawthorn DG; Hill RW; Ronning F; Tanatar MA; Paglione J; Zhang H; Taillefer L; DeBenedictis J; Liang R; Bonn DA; Hardy WN
    Phys Rev Lett; 2005 Apr; 94(14):147004. PubMed ID: 15904097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical point and the nature of the pseudogap of single-layered copper-oxide Bi2Sr2-xLaxCuO6+delta superconductors.
    Zheng GQ; Kuhns PL; Reyes AP; Liang B; Lin CT
    Phys Rev Lett; 2005 Feb; 94(4):047006. PubMed ID: 15783588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valence bond glass theory of electronic disorder and the pseudogap state of high-temperature cuprate superconductors.
    Niestemski LR; Wang Z
    Phys Rev Lett; 2009 Mar; 102(10):107001. PubMed ID: 19392145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermi-liquid computation of the phase diagram of high-Tc cuprate superconductors with an orbital antiferromagnetic pseudogap.
    Laughlin RB
    Phys Rev Lett; 2014 Jan; 112(1):017004. PubMed ID: 24483922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic evidence for Fermi liquid-like energy and temperature dependence of the relaxation rate in the pseudogap phase of the cuprates.
    Mirzaei SI; Stricker D; Hancock JN; Berthod C; Georges A; van Heumen E; Chan MK; Zhao X; Li Y; Greven M; Barišić N; van der Marel D
    Proc Natl Acad Sci U S A; 2013 Apr; 110(15):5774-8. PubMed ID: 23536291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connecting high-field quantum oscillations to zero-field electron spectral functions in the underdoped cuprates.
    Allais A; Chowdhury D; Sachdev S
    Nat Commun; 2014 Dec; 5():5771. PubMed ID: 25493606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant thermal Hall conductivity in the pseudogap phase of cuprate superconductors.
    Grissonnanche G; Legros A; Badoux S; Lefrançois E; Zatko V; Lizaire M; Laliberté F; Gourgout A; Zhou JS; Pyon S; Takayama T; Takagi H; Ono S; Doiron-Leyraud N; Taillefer L
    Nature; 2019 Jul; 571(7765):376-380. PubMed ID: 31316196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermi surface and pseudogap evolution in a cuprate superconductor.
    He Y; Yin Y; Zech M; Soumyanarayanan A; Yee MM; Williams T; Boyer MC; Chatterjee K; Wise WD; Zeljkovic I; Kondo T; Takeuchi T; Ikuta H; Mistark P; Markiewicz RS; Bansil A; Sachdev S; Hudson EW; Hoffman JE
    Science; 2014 May; 344(6184):608-11. PubMed ID: 24812396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Algebraic Fermi liquid from phase fluctuations: "topological" fermions, vortex "berryons," and QED3 theory of cuprate superconductors.
    Franz M; Tesanović Z
    Phys Rev Lett; 2001 Dec; 87(25):257003. PubMed ID: 11736601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors.
    Hinton JP; Thewalt E; Alpichshev Z; Mahmood F; Koralek JD; Chan MK; Veit MJ; Dorow CJ; Barišić N; Kemper AF; Bonn DA; Hardy WN; Liang R; Gedik N; Greven M; Lanzara A; Orenstein J
    Sci Rep; 2016 Apr; 6():23610. PubMed ID: 27071712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman-scattering measurements and theory of the energy-momentum spectrum for underdoped Bi2Sr2CaCuO(8+δ) superconductors: evidence of an s-wave structure for the pseudogap.
    Sakai S; Blanc S; Civelli M; Gallais Y; Cazayous M; Méasson MA; Wen JS; Xu ZJ; Gu GD; Sangiovanni G; Motome Y; Held K; Sacuto A; Georges A; Imada M
    Phys Rev Lett; 2013 Sep; 111(10):107001. PubMed ID: 25166695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An alternative theory on relaxation rates in cuprate superconductors.
    Luo N; Miley GH
    J Phys Condens Matter; 2009 Jan; 21(2):025701. PubMed ID: 21813989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hourglass Dispersion and Resonance of Magnetic Excitations in the Superconducting State of the Single-Layer Cuprate HgBa_{2}CuO_{4+δ} Near Optimal Doping.
    Chan MK; Tang Y; Dorow CJ; Jeong J; Mangin-Thro L; Veit MJ; Ge Y; Abernathy DL; Sidis Y; Bourges P; Greven M
    Phys Rev Lett; 2016 Dec; 117(27):277002. PubMed ID: 28084762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.