These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 16907319)

  • 1. Nonequilibrium Green's function approach to phonon transport in defective carbon nanotubes.
    Yamamoto T; Watanabe K
    Phys Rev Lett; 2006 Jun; 96(25):255503. PubMed ID: 16907319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal transport by phonons in zigzag graphene nanoribbons with structural defects.
    Xie ZX; Chen KQ; Duan W
    J Phys Condens Matter; 2011 Aug; 23(31):315302. PubMed ID: 21772066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of extended line defects on thermal conduction of carbon nanotubes: analyzing phonon structures by band unfolding.
    Huang H
    J Phys Condens Matter; 2015 Aug; 27(30):305402. PubMed ID: 26174107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale Quantum Thermal Conductance at Water Interface: Green's Function Approach Based on One-Dimensional Phonon Model.
    Umegaki T; Tanaka S
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32151110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon engineering in carbon nanotubes by controlling defect concentration.
    Sevik C; Sevinçli H; Cuniberti G; Cağın T
    Nano Lett; 2011 Nov; 11(11):4971-7. PubMed ID: 21967464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonequilibrium Green's function method for thermal transport in junctions.
    Wang JS; Zeng N; Wang J; Gan CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061128. PubMed ID: 17677241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chirality dependence of quantum thermal transport in carbon nanotubes at low temperatures: a first-principles study.
    Hata T; Kawai H; Ohto T; Yamashita K
    J Chem Phys; 2013 Jul; 139(4):044711. PubMed ID: 23902007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Divacancy and Extended Line Defects on the Thermal Transport Properties of Graphene Nanoribbons.
    Luo M; Li BL; Li D
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31766154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single mode phonon energy transmission in functionalized carbon nanotubes.
    Lee J; Varshney V; Roy AK; Farmer BL
    J Chem Phys; 2011 Sep; 135(10):104109. PubMed ID: 21932878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal features of quantized thermal conductance of carbon nanotubes.
    Yamamoto T; Watanabe S; Watanabe K
    Phys Rev Lett; 2004 Feb; 92(7):075502. PubMed ID: 14995867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning thermal transport in Si nanowires by isotope engineering.
    Royo M; Rurali R
    Phys Chem Chem Phys; 2016 Sep; 18(37):26262-26267. PubMed ID: 27722390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function.
    Dahnovsky Y
    J Chem Phys; 2007 Jul; 127(1):014104. PubMed ID: 17627334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal transport across metal–insulator interface via electron–phonon interaction.
    Zhang L; Lü JT; Wang JS; Li B
    J Phys Condens Matter; 2013 Nov; 25(44):445801. PubMed ID: 24131959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal transport in isotopically disordered carbon nanotubes: a comparison between Green's functions and Boltzmann approaches.
    Stoltz G; Lazzeri M; Mauri F
    J Phys Condens Matter; 2009 Jun; 21(24):245302. PubMed ID: 21693942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic conductance of carbon nanotubes.
    Roland C; Buongiorno Nardelli M ; Wang J; Guo H
    Phys Rev Lett; 2000 Mar; 84(13):2921-4. PubMed ID: 11018976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonequilibrium Green's function method for phonon heat transport in quantum system.
    Zeng YJ; Ding ZK; Pan H; Feng YX; Chen KQ
    J Phys Condens Matter; 2022 Mar; 34(22):. PubMed ID: 35263716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of thermal and electronic transport in defect-engineered graphene nanoribbons.
    Haskins J; Kınacı A; Sevik C; Sevinçli H; Cuniberti G; Cağın T
    ACS Nano; 2011 May; 5(5):3779-87. PubMed ID: 21452884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-coherent transport in carbon chains.
    Gorjizadeh N; Farajian AA; Kawazoe Y
    J Phys Condens Matter; 2011 Feb; 23(7):075301. PubMed ID: 21411880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green's function nonequilibrium molecular dynamics method for solid surfaces and interfaces.
    Kajita S
    Phys Rev E; 2016 Sep; 94(3-1):033301. PubMed ID: 27739703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chirality effects in atomic vacancy-limited transport in metallic carbon nanotubes.
    Zeng H; Hu H; Leburton JP
    ACS Nano; 2010 Jan; 4(1):292-6. PubMed ID: 20000404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.