These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Three-dimensional antiferromagnetic CP(N-1) models. Delfino F; Pelissetto A; Vicari E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052109. PubMed ID: 26066121 [TBL] [Abstract][Full Text] [Related]
4. Chiral Tricritical Point: A New Universality Class in Dirac Systems. Yin S; Jian SK; Yao H Phys Rev Lett; 2018 May; 120(21):215702. PubMed ID: 29883165 [TBL] [Abstract][Full Text] [Related]
5. Emergent SO(5) Symmetry at the Columnar Ordering Transition in the Classical Cubic Dimer Model. Sreejith GJ; Powell S; Nahum A Phys Rev Lett; 2019 Mar; 122(8):080601. PubMed ID: 30932618 [TBL] [Abstract][Full Text] [Related]
6. Fermion-induced quantum critical points. Li ZX; Jiang YF; Jian SK; Yao H Nat Commun; 2017 Aug; 8(1):314. PubMed ID: 28827582 [TBL] [Abstract][Full Text] [Related]
12. SU(2)-invariant continuum theory for an unconventional phase transition in a three-dimensional classical dimer model. Powell S; Chalker JT Phys Rev Lett; 2008 Oct; 101(15):155702. PubMed ID: 18999612 [TBL] [Abstract][Full Text] [Related]
13. Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field. Fujisaka H; Tutu H; Rikvold PA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036109. PubMed ID: 11308711 [TBL] [Abstract][Full Text] [Related]
16. Unconventional quantum criticality emerging as a new common language of transition-metal compounds, heavy-fermion systems, and organic conductors. Imada M; Misawa T; Yamaji Y J Phys Condens Matter; 2010 Apr; 22(16):164206. PubMed ID: 21386412 [TBL] [Abstract][Full Text] [Related]
17. Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially extended bistable system in an oscillating field. Korniss G; Rikvold PA; Novotny MA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056127. PubMed ID: 12513576 [TBL] [Abstract][Full Text] [Related]
18. Criticality of O(N) symmetric models in the presence of discrete gauge symmetries. Pelissetto A; Tripodo A; Vicari E Phys Rev E; 2018 Jan; 97(1-1):012123. PubMed ID: 29448441 [TBL] [Abstract][Full Text] [Related]
19. Effects of dissipation on a quantum critical point with disorder. Hoyos JA; Kotabage C; Vojta T Phys Rev Lett; 2007 Dec; 99(23):230601. PubMed ID: 18233349 [TBL] [Abstract][Full Text] [Related]
20. Infinite-randomness critical point in the two-dimensional disordered contact process. Vojta T; Farquhar A; Mast J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011111. PubMed ID: 19257005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]