These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16907560)

  • 1. High-accuracy calculation of the blackbody radiation shift in the 133Cs primary frequency standard.
    Beloy K; Safronova UI; Derevianko A
    Phys Rev Lett; 2006 Jul; 97(4):040801. PubMed ID: 16907560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-accuracy measurement of the blackbody radiation frequency shift of the ground-state hyperfine transition in 133Cs.
    Jefferts SR; Heavner TP; Parker TE; Shirley JH; Donley EA; Ashby N; Levi F; Calonico D; Costanzo GA
    Phys Rev Lett; 2014 Feb; 112(5):050801. PubMed ID: 24580583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic clock with 1×10(-18) room-temperature blackbody Stark uncertainty.
    Beloy K; Hinkley N; Phillips NB; Sherman JA; Schioppo M; Lehman J; Feldman A; Hanssen LM; Oates CW; Ludlow AD
    Phys Rev Lett; 2014 Dec; 113(26):260801. PubMed ID: 25615296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blackbody radiation shifts in optical atomic clocks.
    Safronova M; Kozlov M; Clark C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):439-47. PubMed ID: 22481777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precision calculation of blackbody radiation shifts for optical frequency metrology.
    Safronova MS; Kozlov MG; Clark CW
    Phys Rev Lett; 2011 Sep; 107(14):143006. PubMed ID: 22107192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High accuracy correction of blackbody radiation shift in an optical lattice clock.
    Middelmann T; Falke S; Lisdat C; Sterr U
    Phys Rev Lett; 2012 Dec; 109(26):263004. PubMed ID: 23368558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inner-shell clock transition in atomic thulium with a small blackbody radiation shift.
    Golovizin A; Fedorova E; Tregubov D; Sukachev D; Khabarova K; Sorokin V; Kolachevsky N
    Nat Commun; 2019 Apr; 10(1):1724. PubMed ID: 30979896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-accuracy measurement of the differential scalar polarizability of a 88Sr+ clock using the time-dilation effect.
    Dubé P; Madej AA; Tibbo M; Bernard JE
    Phys Rev Lett; 2014 May; 112(17):173002. PubMed ID: 24836242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. To simulate blackbody radiation frequency shift in cesium fountain frequency standard with CO2 laser.
    Chen J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Sep; 53(9):1685-8. PubMed ID: 16964919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ytterbium in quantum gases and atomic clocks: van der Waals interactions and blackbody shifts.
    Safronova MS; Porsev SG; Clark CW
    Phys Rev Lett; 2012 Dec; 109(23):230802. PubMed ID: 23368178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic clocks with suppressed blackbody radiation shift.
    Yudin VI; Taichenachev AV; Okhapkin MV; Bagayev SN; Tamm C; Peik E; Huntemann N; Mehlstäubler TE; Riehle F
    Phys Rev Lett; 2011 Jul; 107(3):030801. PubMed ID: 21838344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency shift of the cesium clock transition due to blackbody radiation.
    Angstmann EJ; Dzuba VA; Flambaum VV
    Phys Rev Lett; 2006 Jul; 97(4):040802. PubMed ID: 16907561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the ion-trap assisted electrical loads and resulting BBR shift.
    Sharma L; Roy A; Panja S; Ojha VN; De S
    Sci Rep; 2018 Nov; 8(1):16884. PubMed ID: 30443030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-accuracy measurement of atomic polarizability in an optical lattice clock.
    Sherman JA; Lemke ND; Hinkley N; Pizzocaro M; Fox RW; Ludlow AD; Oates CW
    Phys Rev Lett; 2012 Apr; 108(15):153002. PubMed ID: 22587248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate Determination of Blackbody Radiation Shifts in a Strontium Molecular Lattice Clock.
    Iritani B; Tiberi E; Skomorowski W; Moszynski R; Borkowski M; Zelevinsky T
    Phys Rev Lett; 2023 Dec; 131(26):263201. PubMed ID: 38215384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision measurement of fermionic collisions using an 87Sr optical lattice clock with 1 x 10(-16) inaccuracy.
    Swallows MD; Campbell GK; Ludlow AD; Boyd MM; Thomsen JW; Martin MJ; Blatt S; Nicholson TL; Ye J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):574-82. PubMed ID: 20211772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stark shift of the Cs clock transition frequency: a new experimental approach.
    Robyr JL; Knowles P; Weis A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):613-7. PubMed ID: 20211778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blackbody radiation shift assessment for a lutetium ion clock.
    Arnold KJ; Kaewuam R; Roy A; Tan TR; Barrett MD
    Nat Commun; 2018 Apr; 9(1):1650. PubMed ID: 29695720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance.
    Fortier TM; Ashby N; Bergquist JC; Delaney MJ; Diddams SA; Heavner TP; Hollberg L; Itano WM; Jefferts SR; Kim K; Levi F; Lorini L; Oskay WH; Parker TE; Shirley J; Stalnaker JE
    Phys Rev Lett; 2007 Feb; 98(7):070801. PubMed ID: 17359009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rydberg spectroscopy in an optical lattice: blackbody thermometry for atomic clocks.
    Ovsiannikov VD; Derevianko A; Gibble K
    Phys Rev Lett; 2011 Aug; 107(9):093003. PubMed ID: 21929236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.